browse_dataset.py 8.3 KB
Newer Older
1
import argparse
2
3
import numpy as np
import warnings
4
5
6
from mmcv import Config, DictAction, mkdir_or_exist, track_iter_progress
from os import path as osp

7
8
from mmdet3d.core.bbox import (Box3DMode, CameraInstance3DBoxes, Coord3DMode,
                               DepthInstance3DBoxes, LiDARInstance3DBoxes)
9
10
11
from mmdet3d.core.visualizer import (show_multi_modality_result, show_result,
                                     show_seg_result)
from mmdet3d.datasets import build_dataset
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27


def parse_args():
    parser = argparse.ArgumentParser(description='Browse a dataset')
    parser.add_argument('config', help='train config file path')
    parser.add_argument(
        '--skip-type',
        type=str,
        nargs='+',
        default=['Normalize'],
        help='skip some useless pipeline')
    parser.add_argument(
        '--output-dir',
        default=None,
        type=str,
        help='If there is no display interface, you can save it')
28
    parser.add_argument(
29
30
31
32
        '--task',
        type=str,
        choices=['det', 'seg', 'multi_modality-det', 'mono-det'],
        help='Determine the visualization method depending on the task.')
33
34
35
36
37
    parser.add_argument(
        '--online',
        action='store_true',
        help='Whether to perform online visualization. Note that you often '
        'need a monitor to do so.')
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
    args = parser.parse_args()
    return args


52
53
def build_data_cfg(config_path, skip_type, cfg_options):
    """Build data config for loading visualization data."""
54
55
56
57
58
59
60
    cfg = Config.fromfile(config_path)
    if cfg_options is not None:
        cfg.merge_from_dict(cfg_options)
    # import modules from string list.
    if cfg.get('custom_imports', None):
        from mmcv.utils import import_modules_from_strings
        import_modules_from_strings(**cfg['custom_imports'])
61
62
    # extract inner dataset of `RepeatDataset` as `cfg.data.train`
    # so we don't need to worry about it later
63
    if cfg.data.train['type'] == 'RepeatDataset':
64
        cfg.data.train = cfg.data.train.dataset
65
66
67
    # use only first dataset for `ConcatDataset`
    if cfg.data.train['type'] == 'ConcatDataset':
        cfg.data.train = cfg.data.train.datasets[0]
68
69
70
    train_data_cfg = cfg.data.train
    # eval_pipeline purely consists of loading functions
    # use eval_pipeline for data loading
71
    train_data_cfg['pipeline'] = [
72
        x for x in cfg.eval_pipeline if x['type'] not in skip_type
73
74
75
76
77
    ]

    return cfg


78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
def to_depth_mode(points, bboxes):
    """Convert points and bboxes to Depth Coord and Depth Box mode."""
    if points is not None:
        points = Coord3DMode.convert_point(points.copy(), Coord3DMode.LIDAR,
                                           Coord3DMode.DEPTH)
    if bboxes is not None:
        bboxes = Box3DMode.convert(bboxes.clone(), Box3DMode.LIDAR,
                                   Box3DMode.DEPTH)
    return points, bboxes


def show_det_data(idx, dataset, out_dir, filename, show=False):
    """Visualize 3D point cloud and 3D bboxes."""
    example = dataset.prepare_train_data(idx)
    points = example['points']._data.numpy()
    gt_bboxes = dataset.get_ann_info(idx)['gt_bboxes_3d'].tensor
    if dataset.box_mode_3d != Box3DMode.DEPTH:
        points, gt_bboxes = to_depth_mode(points, gt_bboxes)
    show_result(
        points,
        gt_bboxes.clone(),
        None,
        out_dir,
        filename,
        show=show,
        snapshot=True)


def show_seg_data(idx, dataset, out_dir, filename, show=False):
    """Visualize 3D point cloud and segmentation mask."""
    example = dataset.prepare_train_data(idx)
    points = example['points']._data.numpy()
    gt_seg = example['pts_semantic_mask']._data.numpy()
    show_seg_result(
        points,
        gt_seg.copy(),
        None,
        out_dir,
        filename,
        np.array(dataset.PALETTE),
        dataset.ignore_index,
        show=show,
        snapshot=True)


123
124
125
126
127
128
def show_proj_bbox_img(idx,
                       dataset,
                       out_dir,
                       filename,
                       show=False,
                       is_nus_mono=False):
129
    """Visualize 3D bboxes on 2D image by projection."""
130
131
132
133
    try:
        example = dataset.prepare_train_data(idx)
    except AttributeError:  # for Mono-3D datasets
        example = dataset.prepare_train_img(idx)
134
135
136
137
138
139
140
141
142
143
144
145
146
    gt_bboxes = dataset.get_ann_info(idx)['gt_bboxes_3d']
    img_metas = example['img_metas']._data
    img = example['img']._data.numpy()
    # need to transpose channel to first dim
    img = img.transpose(1, 2, 0)
    # no 3D gt bboxes, just show img
    if gt_bboxes.tensor.shape[0] == 0:
        gt_bboxes = None
    if isinstance(gt_bboxes, DepthInstance3DBoxes):
        show_multi_modality_result(
            img,
            gt_bboxes,
            None,
147
            None,
148
149
            out_dir,
            filename,
150
            box_mode='depth',
151
152
153
154
155
156
157
158
159
160
            img_metas=img_metas,
            show=show)
    elif isinstance(gt_bboxes, LiDARInstance3DBoxes):
        show_multi_modality_result(
            img,
            gt_bboxes,
            None,
            img_metas['lidar2img'],
            out_dir,
            filename,
161
162
163
164
165
166
167
168
            box_mode='lidar',
            img_metas=img_metas,
            show=show)
    elif isinstance(gt_bboxes, CameraInstance3DBoxes):
        show_multi_modality_result(
            img,
            gt_bboxes,
            None,
169
            img_metas['cam2img'],
170
171
172
            out_dir,
            filename,
            box_mode='camera',
173
174
175
176
            img_metas=img_metas,
            show=show)
    else:
        # can't project, just show img
177
178
        warnings.warn(
            f'unrecognized gt box type {type(gt_bboxes)}, only show image')
179
180
181
182
        show_multi_modality_result(
            img, None, None, None, out_dir, filename, show=show)


183
184
185
186
187
188
def main():
    args = parse_args()

    if args.output_dir is not None:
        mkdir_or_exist(args.output_dir)

189
190
191
192
193
194
    cfg = build_data_cfg(args.config, args.skip_type, args.cfg_options)
    try:
        dataset = build_dataset(
            cfg.data.train, default_args=dict(filter_empty_gt=False))
    except TypeError:  # seg dataset doesn't have `filter_empty_gt` key
        dataset = build_dataset(cfg.data.train)
195
    data_infos = dataset.data_infos
196
197
198
    dataset_type = cfg.dataset_type

    # configure visualization mode
199
    vis_task = args.task  # 'det', 'seg', 'multi_modality-det', 'mono-det'
200
201

    for idx, data_info in enumerate(track_iter_progress(data_infos)):
202
        if dataset_type in ['KittiDataset', 'WaymoDataset']:
203
            data_path = data_info['point_cloud']['velodyne_path']
204
205
        elif dataset_type in [
                'ScanNetDataset', 'SUNRGBDDataset', 'ScanNetSegDataset',
206
                'S3DISSegDataset', 'S3DISDataset'
207
        ]:
208
            data_path = data_info['pts_path']
209
        elif dataset_type in ['NuScenesDataset', 'LyftDataset']:
210
211
212
            data_path = data_info['lidar_path']
        elif dataset_type in ['NuScenesMonoDataset']:
            data_path = data_info['file_name']
213
214
        else:
            raise NotImplementedError(
215
                f'unsupported dataset type {dataset_type}')
216

217
        file_name = osp.splitext(osp.basename(data_path))[0]
218

219
        if vis_task in ['det', 'multi_modality-det']:
220
221
222
            # show 3D bboxes on 3D point clouds
            show_det_data(
                idx, dataset, args.output_dir, file_name, show=args.online)
223
224
225
226
227
228
229
230
231
232
        if vis_task in ['multi_modality-det', 'mono-det']:
            # project 3D bboxes to 2D image
            show_proj_bbox_img(
                idx,
                dataset,
                args.output_dir,
                file_name,
                show=args.online,
                is_nus_mono=(dataset_type == 'NuScenesMonoDataset'))
        elif vis_task in ['seg']:
233
234
235
            # show 3D segmentation mask on 3D point clouds
            show_seg_data(
                idx, dataset, args.output_dir, file_name, show=args.online)
236
237
238
239


if __name__ == '__main__':
    main()