update_infos_to_v2.py 34.2 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) OpenMMLab. All rights reserved.
"""Convert the annotation pkl to the standard format in OpenMMLab V2.0.

Example:
    python tools/data_converter/update_infos_to_v2.py
        --pkl ./data/kitti/kitti_infos_train.pkl
        --out-dir ./kitti_v2/
"""

import argparse
import copy
import time
from os import path as osp

import mmcv
import numpy as np
ZCMax's avatar
ZCMax committed
17
from nuscenes.nuscenes import NuScenes
jshilong's avatar
jshilong committed
18

ZCMax's avatar
ZCMax committed
19
from mmdet3d.datasets.convert_utils import get_2d_boxes
VVsssssk's avatar
VVsssssk committed
20
from mmdet3d.datasets.utils import convert_quaternion_to_matrix
zhangshilong's avatar
zhangshilong committed
21
from mmdet3d.structures import points_cam2img
VVsssssk's avatar
VVsssssk committed
22

jshilong's avatar
jshilong committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

def get_empty_instance():
    """Empty annotation for single instance."""
    instance = dict(
        # (list[float], required): list of 4 numbers representing
        # the bounding box of the instance, in (x1, y1, x2, y2) order.
        bbox=None,
        # (int, required): an integer in the range
        # [0, num_categories-1] representing the category label.
        bbox_label=None,
        #  (list[float], optional): list of 7 (or 9) numbers representing
        #  the 3D bounding box of the instance,
        #  in [x, y, z, w, h, l, yaw]
        #  (or [x, y, z, w, h, l, yaw, vx, vy]) order.
        bbox_3d=None,
        # (bool, optional): Whether to use the
        # 3D bounding box during training.
        bbox_3d_isvalid=None,
        # (int, optional): 3D category label
        # (typically the same as label).
        bbox_label_3d=None,
        # (float, optional): Projected center depth of the
        # 3D bounding box compared to the image plane.
        depth=None,
        #  (list[float], optional): Projected
        #  2D center of the 3D bounding box.
        center_2d=None,
        # (int, optional): Attribute labels
        # (fine-grained labels such as stopping, moving, ignore, crowd).
        attr_label=None,
        # (int, optional): The number of LiDAR
        # points in the 3D bounding box.
        num_lidar_pts=None,
        # (int, optional): The number of Radar
        # points in the 3D bounding box.
        num_radar_pts=None,
        # (int, optional): Difficulty level of
        # detecting the 3D bounding box.
        difficulty=None,
        unaligned_bbox_3d=None)
    return instance


ZCMax's avatar
ZCMax committed
66
67
68
69
70
71
72
73
74
75
76
77
78
def get_empty_multicamera_instances():

    cam_instance = dict(
        CAM_FONT=None,
        CAM_FRONT_RIGHT=None,
        CAM_FRONT_LEFT=None,
        CAM_BACK=None,
        CAM_BACK_RIGHT=None,
        CAM_BACK_LEFT=None)

    return cam_instance


jshilong's avatar
jshilong committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
def get_empty_lidar_points():
    lidar_points = dict(
        # (int, optional) : Number of features for each point.
        num_pts_feats=None,
        # (str, optional): Path of LiDAR data file.
        lidar_path=None,
        # (list[list[float]]): Transformation matrix from lidar
        # or depth to image with shape [4, 4].
        lidar2img=None,
        # (list[list[float]], optional): Transformation matrix
        # from lidar to ego-vehicle
        # with shape [4, 4].
        # (Referenced camera coordinate system is ego in KITTI.)
        lidar2ego=None,
    )
    return lidar_points


def get_empty_radar_points():
    radar_points = dict(
        # (int, optional) : Number of features for each point.
        num_pts_feats=None,
        # (str, optional): Path of RADAR data file.
        radar_path=None,
        # Transformation matrix from lidar to
        # ego-vehicle with shape [4, 4].
        # (Referenced camera coordinate system is ego in KITTI.)
        radar2ego=None,
    )
    return radar_points


def get_empty_img_info():
    img_info = dict(
        # (str, required): the path to the image file.
        img_path=None,
        # (int) The height of the image.
        height=None,
        # (int) The width of the image.
        width=None,
        # (str, optional): Path of the depth map file
        depth_map=None,
        # (list[list[float]], optional) : Transformation
        # matrix from camera to image with
        # shape [3, 3], [3, 4] or [4, 4].
        cam2img=None,
        # (list[list[float]], optional) : Transformation
        # matrix from camera to ego-vehicle
        # with shape [4, 4].
        cam2ego=None)
    return img_info


def get_single_image_sweep():
    single_image_sweep = dict(
        # (float, optional) : Timestamp of the current frame.
        timestamp=None,
        # (list[list[float]], optional) : Transformation matrix
        # from ego-vehicle to the global
        ego2global=None,
        # (dict): Information of images captured by multiple cameras
        images=dict(
            CAM0=get_empty_img_info(),
            CAM1=get_empty_img_info(),
            CAM2=get_empty_img_info(),
            CAM3=get_empty_img_info(),
        ))
    return single_image_sweep


def get_single_lidar_sweep():
    single_lidar_sweep = dict(
        # (float, optional) : Timestamp of the current frame.
        timestamp=None,
        # (list[list[float]], optional) : Transformation matrix
        # from ego-vehicle to the global
        ego2global=None,
        # (dict): Information of images captured by multiple cameras
        lidar_points=get_empty_lidar_points())
    return single_lidar_sweep


def get_empty_standard_data_info():

    data_info = dict(
        # (str): Sample id of the frame.
        sample_id=None,
        # (str, optional): '000010'
        token=None,
        **get_single_image_sweep(),
        # (dict, optional): dict contains information
        # of LiDAR point cloud frame.
        lidar_points=get_empty_lidar_points(),
        # (dict, optional) Each dict contains
        # information of Radar point cloud frame.
        radar_points=get_empty_radar_points(),
        # (list[dict], optional): Image sweeps data.
        image_sweeps=[],
VVsssssk's avatar
VVsssssk committed
177
        lidar_sweeps=[],
jshilong's avatar
jshilong committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        instances=[],
        # (list[dict], optional): Required by object
        # detection, instance  to be ignored during training.
        instances_ignore=[],
        # (str, optional): Path of semantic labels for each point.
        pts_semantic_mask_path=None,
        # (str, optional): Path of instance labels for each point.
        pts_instance_mask_path=None)
    return data_info


def clear_instance_unused_keys(instance):
    keys = list(instance.keys())
    for k in keys:
        if instance[k] is None:
            del instance[k]
    return instance


def clear_data_info_unused_keys(data_info):
    keys = list(data_info.keys())
    empty_flag = True
    for key in keys:
        # we allow no annotations in datainfo
        if key == 'instances':
            empty_flag = False
            continue
        if isinstance(data_info[key], list):
            if len(data_info[key]) == 0:
                del data_info[key]
            else:
                empty_flag = False
        elif data_info[key] is None:
            del data_info[key]
        elif isinstance(data_info[key], dict):
            _, sub_empty_flag = clear_data_info_unused_keys(data_info[key])
            if sub_empty_flag is False:
                empty_flag = False
            else:
                # sub field is empty
                del data_info[key]
        else:
            empty_flag = False

    return data_info, empty_flag


ZCMax's avatar
ZCMax committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
def generate_camera_instances(info, nusc):

    # get bbox annotations for camera
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_BACK',
        'CAM_BACK_LEFT',
        'CAM_BACK_RIGHT',
    ]

    empty_multicamera_instance = get_empty_multicamera_instances()

    for cam in camera_types:
        cam_info = info['cams'][cam]
        # list[dict]
        ann_infos = get_2d_boxes(
            nusc,
            cam_info['sample_data_token'],
            visibilities=['', '1', '2', '3', '4'])
        empty_multicamera_instance[cam] = ann_infos

    return empty_multicamera_instance


VVsssssk's avatar
VVsssssk committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
def update_nuscenes_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
    print(f'Reading from input file: {pkl_path}.')
    data_list = mmcv.load(pkl_path)
    METAINFO = {
        'CLASSES':
        ('car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
         'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'),
        'DATASET':
        'Nuscenes',
        'version':
        data_list['metadata']['version']
    }
ZCMax's avatar
ZCMax committed
267
268
269
270
271
    nusc = NuScenes(
        version=data_list['metadata']['version'],
        dataroot='./data/nuscenes',
        verbose=True)

VVsssssk's avatar
VVsssssk committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
    print('Start updating:')
    converted_list = []
    for i, ori_info_dict in enumerate(
            mmcv.track_iter_progress(data_list['infos'])):
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['sample_idx'] = i
        temp_data_info['token'] = ori_info_dict['token']
        temp_data_info['ego2global'] = convert_quaternion_to_matrix(
            ori_info_dict['ego2global_rotation'],
            ori_info_dict['ego2global_translation'])
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'lidar_path'].split('/')[-1]
        temp_data_info['lidar_points'][
            'lidar2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['lidar2ego_rotation'],
                ori_info_dict['lidar2ego_translation'])
        # bc-breaking: Timestamp has divided 1e6 in pkl infos.
        temp_data_info['timestamp'] = ori_info_dict['timestamp'] / 1e6
        for ori_sweep in ori_info_dict['sweeps']:
            temp_lidar_sweep = get_single_lidar_sweep()
            temp_lidar_sweep['lidar_points'][
                'lidar2ego'] = convert_quaternion_to_matrix(
                    ori_sweep['sensor2ego_rotation'],
                    ori_sweep['sensor2ego_translation'])
            temp_lidar_sweep['ego2global'] = convert_quaternion_to_matrix(
                ori_sweep['ego2global_rotation'],
                ori_sweep['ego2global_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_sweep['sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_sweep['sensor2lidar_translation']
            temp_lidar_sweep['lidar_points'][
                'lidar2sensor'] = lidar2sensor.astype(np.float32).tolist()
            temp_lidar_sweep['timestamp'] = ori_sweep['timestamp'] / 1e6
            temp_lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
                'data_path']
            temp_lidar_sweep['sample_data_token'] = ori_sweep[
                'sample_data_token']
            temp_data_info['lidar_sweeps'].append(temp_lidar_sweep)
        temp_data_info['images'] = {}
        for cam in ori_info_dict['cams']:
            empty_img_info = get_empty_img_info()
            empty_img_info['img_path'] = ori_info_dict['cams'][cam][
                'data_path'].split('/')[-1]
            empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
                'cam_intrinsic'].tolist()
            empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
                'sample_data_token']
            # bc-breaking: Timestamp has divided 1e6 in pkl infos.
            empty_img_info[
                'timestamp'] = ori_info_dict['cams'][cam]['timestamp'] / 1e6
            empty_img_info['cam2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['cams'][cam]['sensor2ego_rotation'],
                ori_info_dict['cams'][cam]['sensor2ego_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_info_dict['cams'][cam][
                'sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_info_dict['cams'][cam][
                'sensor2lidar_translation']
            empty_img_info['lidar2cam'] = lidar2sensor.astype(
                np.float32).tolist()
            temp_data_info['images'][cam] = empty_img_info
        num_instances = ori_info_dict['gt_boxes'].shape[0]
        ignore_class_name = set()
        for i in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox_3d'] = ori_info_dict['gt_boxes'][
                i, :].tolist()
            if ori_info_dict['gt_names'][i] in METAINFO['CLASSES']:
                empty_instance['bbox_label'] = METAINFO['CLASSES'].index(
                    ori_info_dict['gt_names'][i])
            else:
                ignore_class_name.add(ori_info_dict['gt_names'][i])
                empty_instance['bbox_label'] = -1
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['velocity'] = ori_info_dict['gt_velocity'][
                i, :].tolist()
            empty_instance['num_lidar_pts'] = ori_info_dict['num_lidar_pts'][i]
            empty_instance['num_radar_pts'] = ori_info_dict['num_radar_pts'][i]
            empty_instance['bbox_3d_isvalid'] = ori_info_dict['valid_flag'][i]
            empty_instance = clear_instance_unused_keys(empty_instance)
            temp_data_info['instances'].append(empty_instance)
ZCMax's avatar
ZCMax committed
354
355
        temp_data_info['cam_instances'] = generate_camera_instances(
            ori_info_dict, nusc)
VVsssssk's avatar
VVsssssk committed
356
357
358
359
360
361
362
363
364
365
366
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
    converted_data_info = dict(metainfo=METAINFO, data_list=converted_list)

    mmcv.dump(converted_data_info, out_path, 'pkl')


jshilong's avatar
jshilong committed
367
368
369
370
371
372
373
374
375
def update_kitti_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    # TODO update to full label
    # TODO discuss how to process 'Van', 'DontCare'
    METAINFO = {
VVsssssk's avatar
VVsssssk committed
376
377
        'CLASSES': ('Pedestrian', 'Cyclist', 'Car', 'Van', 'Truck',
                    'Person_sitting', 'Tram', 'Misc'),
jshilong's avatar
jshilong committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    }
    print(f'Reading from input file: {pkl_path}.')
    data_list = mmcv.load(pkl_path)
    print('Start updating:')
    converted_list = []
    for ori_info_dict in mmcv.track_iter_progress(data_list):
        temp_data_info = get_empty_standard_data_info()

        if 'plane' in ori_info_dict:
            temp_data_info['plane'] = ori_info_dict['plane']

        temp_data_info['sample_id'] = ori_info_dict['image']['image_idx']

        temp_data_info['images']['CAM0']['cam2img'] = ori_info_dict['calib'][
            'P0'].tolist()
        temp_data_info['images']['CAM1']['cam2img'] = ori_info_dict['calib'][
            'P1'].tolist()
        temp_data_info['images']['CAM2']['cam2img'] = ori_info_dict['calib'][
            'P2'].tolist()
        temp_data_info['images']['CAM3']['cam2img'] = ori_info_dict['calib'][
            'P3'].tolist()

        temp_data_info['images']['CAM2']['img_path'] = ori_info_dict['image'][
            'image_path'].split('/')[-1]
        h, w = ori_info_dict['image']['image_shape']
        temp_data_info['images']['CAM2']['height'] = h
        temp_data_info['images']['CAM2']['width'] = w
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'point_cloud']['velodyne_path'].split('/')[-1]

        rect = ori_info_dict['calib']['R0_rect'].astype(np.float32)
        Trv2c = ori_info_dict['calib']['Tr_velo_to_cam'].astype(np.float32)
        lidar2cam = rect @ Trv2c
        temp_data_info['images']['CAM2']['lidar2cam'] = lidar2cam.tolist()
jshilong's avatar
jshilong committed
414
415
416
417
418
419
420
421
422
        temp_data_info['images']['CAM0']['lidar2img'] = (
            ori_info_dict['calib']['P0'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM1']['lidar2img'] = (
            ori_info_dict['calib']['P1'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM2']['lidar2img'] = (
            ori_info_dict['calib']['P2'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM3']['lidar2img'] = (
            ori_info_dict['calib']['P3'] @ lidar2cam).tolist()

jshilong's avatar
jshilong committed
423
424
425
426
427
428
429
430
431
432
        temp_data_info['lidar_points']['Tr_velo_to_cam'] = Trv2c.tolist()

        # for potential usage
        temp_data_info['images']['R0_rect'] = ori_info_dict['calib'][
            'R0_rect'].astype(np.float32).tolist()
        temp_data_info['lidar_points']['Tr_imu_to_velo'] = ori_info_dict[
            'calib']['Tr_imu_to_velo'].astype(np.float32).tolist()

        anns = ori_info_dict['annos']
        num_instances = len(anns['name'])
ZCMax's avatar
ZCMax committed
433
        cam2img = ori_info_dict['calib']['P2']
jshilong's avatar
jshilong committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

        ignore_class_name = set()
        instance_list = []
        for instance_id in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            if anns['name'][instance_id] in METAINFO['CLASSES']:
                empty_instance['bbox_label'] = METAINFO['CLASSES'].index(
                    anns['name'][instance_id])
            else:
                ignore_class_name.add(anns['name'][instance_id])
                empty_instance['bbox_label'] = -1

            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            loc = anns['location'][instance_id]
            dims = anns['dimensions'][instance_id]
            rots = anns['rotation_y'][:, None][instance_id]
ZCMax's avatar
ZCMax committed
453
454
455
456
457
458
459
460
461
462
463

            dst = np.array([0.5, 0.5, 0.5])
            src = np.array([0.5, 1.0, 0.5])

            center_3d = loc + dims * (dst - src)
            center_2d = points_cam2img(
                center_3d.reshape([1, 3]), cam2img, with_depth=True)
            center_2d = center_2d.squeeze().tolist()
            empty_instance['center_2d'] = center_2d[:2]
            empty_instance['depth'] = center_2d[2]

464
            gt_bboxes_3d = np.concatenate([loc, dims, rots]).tolist()
jshilong's avatar
jshilong committed
465
466
467
468
            empty_instance['bbox_3d'] = gt_bboxes_3d
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
469
470
            empty_instance['truncated'] = anns['truncated'][
                instance_id].tolist()
jshilong's avatar
jshilong committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
            empty_instance['occluded'] = anns['occluded'][instance_id].tolist()
            empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
            empty_instance['score'] = anns['score'][instance_id].tolist()
            empty_instance['index'] = anns['index'][instance_id].tolist()
            empty_instance['group_id'] = anns['group_ids'][instance_id].tolist(
            )
            empty_instance['difficulty'] = anns['difficulty'][
                instance_id].tolist()
            empty_instance['num_lidar_pts'] = anns['num_points_in_gt'][
                instance_id].tolist()
            empty_instance = clear_instance_unused_keys(empty_instance)
            instance_list.append(empty_instance)
        temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
    converted_data_info = dict(
        metainfo={'DATASET': 'KITTI'}, data_list=converted_list)

    mmcv.dump(converted_data_info, out_path, 'pkl')


ZCMax's avatar
ZCMax committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
def update_s3dis_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    METAINFO = {'CLASSES': ('table', 'chair', 'sofa', 'bookcase', 'board')}
    print(f'Reading from input file: {pkl_path}.')
    data_list = mmcv.load(pkl_path)
    print('Start updating:')
    converted_list = []
    for ori_info_dict in mmcv.track_iter_progress(data_list):
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'pts_path'].split('/')[-1]
        temp_data_info['pts_semantic_mask_path'] = ori_info_dict[
            'pts_semantic_mask_path'].split('/')[-1]
        temp_data_info['pts_instance_mask_path'] = ori_info_dict[
            'pts_instance_mask_path'].split('/')[-1]

        # TODO support camera
        # np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam
        anns = ori_info_dict.get('annos', None)
        ignore_class_name = set()
        if anns is not None:
            if anns['gt_num'] == 0:
                instance_list = []
            else:
                num_instances = len(anns['class'])
                instance_list = []
                for instance_id in range(num_instances):
                    empty_instance = get_empty_instance()
                    empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                        instance_id].tolist()

                    if anns['class'][instance_id] < len(METAINFO['CLASSES']):
                        empty_instance['bbox_label_3d'] = anns['class'][
                            instance_id]
                    else:
                        ignore_class_name.add(
                            METAINFO['CLASSES'][anns['class'][instance_id]])
                        empty_instance['bbox_label_3d'] = -1

                    empty_instance = clear_instance_unused_keys(empty_instance)
                    instance_list.append(empty_instance)
            temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
    converted_data_info = dict(
        metainfo={'DATASET': 'S3DIS'}, data_list=converted_list)

    mmcv.dump(converted_data_info, out_path, 'pkl')


jshilong's avatar
jshilong committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
def update_scannet_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    METAINFO = {
        'CLASSES':
        ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
         'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator',
         'showercurtrain', 'toilet', 'sink', 'bathtub', 'garbagebin')
    }
    print(f'Reading from input file: {pkl_path}.')
    data_list = mmcv.load(pkl_path)
    print('Start updating:')
    converted_list = []
    for ori_info_dict in mmcv.track_iter_progress(data_list):
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'pts_path'].split('/')[-1]
        temp_data_info['pts_semantic_mask_path'] = ori_info_dict[
            'pts_semantic_mask_path'].split('/')[-1]
        temp_data_info['pts_instance_mask_path'] = ori_info_dict[
            'pts_instance_mask_path'].split('/')[-1]

        # TODO support camera
        # np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam
        anns = ori_info_dict['annos']
        temp_data_info['axis_align_matrix'] = anns['axis_align_matrix'].tolist(
        )
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        if anns['gt_num'] == 0:
            instance_list = []
        else:
            num_instances = len(anns['name'])
            ignore_class_name = set()
            instance_list = []
            for instance_id in range(num_instances):
                empty_instance = get_empty_instance()
                empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                    instance_id].tolist()

                if anns['name'][instance_id] in METAINFO['CLASSES']:
                    empty_instance['bbox_label_3d'] = METAINFO[
                        'CLASSES'].index(anns['name'][instance_id])
                else:
                    ignore_class_name.add(anns['name'][instance_id])
                    empty_instance['bbox_label_3d'] = -1

                empty_instance = clear_instance_unused_keys(empty_instance)
                instance_list.append(empty_instance)
jshilong's avatar
jshilong committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
        temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
    converted_data_info = dict(
        metainfo={'DATASET': 'SCANNET'}, data_list=converted_list)

    mmcv.dump(converted_data_info, out_path, 'pkl')


def update_sunrgbd_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    METAINFO = {
        'CLASSES': ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk',
                    'dresser', 'night_stand', 'bookshelf', 'bathtub')
    }
    print(f'Reading from input file: {pkl_path}.')
    data_list = mmcv.load(pkl_path)
    print('Start updating:')
    converted_list = []
    for ori_info_dict in mmcv.track_iter_progress(data_list):
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'pts_path'].split('/')[-1]
        calib = ori_info_dict['calib']
        rt_mat = calib['Rt']
        # follow Coord3DMode.convert_point
        rt_mat = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]
                           ]) @ rt_mat.transpose(1, 0)
        depth2img = calib['K'] @ rt_mat
        temp_data_info['images']['CAM0']['depth2img'] = depth2img.tolist()
        temp_data_info['images']['CAM0']['img_path'] = ori_info_dict['image'][
            'image_path'].split('/')[-1]
        h, w = ori_info_dict['image']['image_shape']
        temp_data_info['images']['CAM0']['height'] = h
        temp_data_info['images']['CAM0']['width'] = w

        anns = ori_info_dict['annos']
zhangshilong's avatar
zhangshilong committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
        if anns['gt_num'] == 0:
            instance_list = []
        else:
            num_instances = len(anns['name'])
            ignore_class_name = set()
            instance_list = []
            for instance_id in range(num_instances):
                empty_instance = get_empty_instance()
                empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                    instance_id].tolist()
                empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
                if anns['name'][instance_id] in METAINFO['CLASSES']:
                    empty_instance['bbox_label_3d'] = METAINFO[
                        'CLASSES'].index(anns['name'][instance_id])
                    empty_instance['bbox_label'] = empty_instance[
                        'bbox_label_3d']
                else:
                    ignore_class_name.add(anns['name'][instance_id])
                    empty_instance['bbox_label_3d'] = -1
                    empty_instance['bbox_label'] = -1
                empty_instance = clear_instance_unused_keys(empty_instance)
                instance_list.append(empty_instance)
jshilong's avatar
jshilong committed
677
678
679
680
681
682
683
684
685
686
687
688
689
        temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
    converted_data_info = dict(
        metainfo={'DATASET': 'SUNRGBD'}, data_list=converted_list)

    mmcv.dump(converted_data_info, out_path, 'pkl')


VVsssssk's avatar
VVsssssk committed
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
def update_lyft_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
    print(f'Reading from input file: {pkl_path}.')
    data_list = mmcv.load(pkl_path)
    METAINFO = {
        'CLASSES':
        ('car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle',
         'motorcycle', 'bicycle', 'pedestrian', 'animal'),
        'DATASET':
        'Nuscenes',
        'version':
        data_list['metadata']['version']
    }
    print('Start updating:')
    converted_list = []
    for i, ori_info_dict in enumerate(
            mmcv.track_iter_progress(data_list['infos'])):
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['sample_idx'] = i
        temp_data_info['token'] = ori_info_dict['token']
        temp_data_info['ego2global'] = convert_quaternion_to_matrix(
            ori_info_dict['ego2global_rotation'],
            ori_info_dict['ego2global_translation'])
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'lidar_path'].split('/')[-1]
        temp_data_info['lidar_points'][
            'lidar2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['lidar2ego_rotation'],
                ori_info_dict['lidar2ego_translation'])
        # bc-breaking: Timestamp has divided 1e6 in pkl infos.
        temp_data_info['timestamp'] = ori_info_dict['timestamp'] / 1e6
        for ori_sweep in ori_info_dict['sweeps']:
            temp_lidar_sweep = get_single_lidar_sweep()
            temp_lidar_sweep['lidar_points'][
                'lidar2ego'] = convert_quaternion_to_matrix(
                    ori_sweep['sensor2ego_rotation'],
                    ori_sweep['sensor2ego_translation'])
            temp_lidar_sweep['ego2global'] = convert_quaternion_to_matrix(
                ori_sweep['ego2global_rotation'],
                ori_sweep['ego2global_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_sweep['sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_sweep['sensor2lidar_translation']
            temp_lidar_sweep['lidar_points'][
                'lidar2sensor'] = lidar2sensor.astype(np.float32).tolist()
            # bc-breaking: Timestamp has divided 1e6 in pkl infos.
            temp_lidar_sweep['timestamp'] = ori_sweep['timestamp'] / 1e6
            temp_lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
                'data_path']
            temp_lidar_sweep['sample_data_token'] = ori_sweep[
                'sample_data_token']
            temp_data_info['lidar_sweeps'].append(temp_lidar_sweep)
        temp_data_info['images'] = {}
        for cam in ori_info_dict['cams']:
            empty_img_info = get_empty_img_info()
            empty_img_info['img_path'] = ori_info_dict['cams'][cam][
                'data_path'].split('/')[-1]
            empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
                'cam_intrinsic'].tolist()
            empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
                'sample_data_token']
            empty_img_info[
                'timestamp'] = ori_info_dict['cams'][cam]['timestamp'] / 1e6
            empty_img_info['cam2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['cams'][cam]['sensor2ego_rotation'],
                ori_info_dict['cams'][cam]['sensor2ego_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_info_dict['cams'][cam][
                'sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_info_dict['cams'][cam][
                'sensor2lidar_translation']
            empty_img_info['lidar2cam'] = lidar2sensor.astype(
                np.float32).tolist()
            temp_data_info['images'][cam] = empty_img_info
        num_instances = ori_info_dict['gt_boxes'].shape[0]
        ignore_class_name = set()
        for i in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox_3d'] = ori_info_dict['gt_boxes'][
                i, :].tolist()
            if ori_info_dict['gt_names'][i] in METAINFO['CLASSES']:
                empty_instance['bbox_label'] = METAINFO['CLASSES'].index(
                    ori_info_dict['gt_names'][i])
            else:
                ignore_class_name.add(ori_info_dict['gt_names'][i])
                empty_instance['bbox_label'] = -1
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance = clear_instance_unused_keys(empty_instance)
            temp_data_info['instances'].append(empty_instance)
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
    converted_data_info = dict(metainfo=METAINFO, data_list=converted_list)

    mmcv.dump(converted_data_info, out_path, 'pkl')


jshilong's avatar
jshilong committed
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
def parse_args():
    parser = argparse.ArgumentParser(description='Arg parser for data coords '
                                     'update due to coords sys refactor.')
    parser.add_argument(
        '--dataset', type=str, default='kitti', help='name of dataset')
    parser.add_argument(
        '--pkl',
        type=str,
        default='./data/kitti/kitti_infos_train.pkl ',
        help='specify the root dir of dataset')
    parser.add_argument(
        '--out-dir',
        type=str,
        default='converted_annotations',
        required=False,
        help='output direction of info pkl')
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    if args.out_dir is None:
        args.out_dir = args.root_dir
jshilong's avatar
jshilong committed
818
    if args.dataset.lower() == 'kitti':
jshilong's avatar
jshilong committed
819
        update_kitti_infos(pkl_path=args.pkl, out_dir=args.out_dir)
jshilong's avatar
jshilong committed
820
821
822
823
    elif args.dataset.lower() == 'scannet':
        update_scannet_infos(pkl_path=args.pkl, out_dir=args.out_dir)
    elif args.dataset.lower() == 'sunrgbd':
        update_sunrgbd_infos(pkl_path=args.pkl, out_dir=args.out_dir)
VVsssssk's avatar
VVsssssk committed
824
825
    elif args.dataset.lower() == 'lyft':
        update_lyft_infos(pkl_path=args.pkl, out_dir=args.out_dir)
VVsssssk's avatar
VVsssssk committed
826
827
    elif args.dataset.lower() == 'nuscenes':
        update_nuscenes_infos(pkl_path=args.pkl, out_dir=args.out_dir)
ZCMax's avatar
ZCMax committed
828
829
    elif args.dataset.lower() == 's3dis':
        update_s3dis_infos(pkl_path=args.pkl, out_dir=args.out_dir)
jshilong's avatar
jshilong committed
830
831
832
    else:
        raise NotImplementedError(
            f'Do not support convert {args.dataset} to v2.')
jshilong's avatar
jshilong committed
833
834
835
836


if __name__ == '__main__':
    main()