create_gt_database.py 23.8 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
4
import pickle
from os import path as osp

zhangwenwei's avatar
zhangwenwei committed
5
6
7
import mmcv
import numpy as np
from mmcv import track_iter_progress
zhangwenwei's avatar
zhangwenwei committed
8
from mmcv.ops import roi_align
zhangwenwei's avatar
zhangwenwei committed
9
from pycocotools import mask as maskUtils
zhangwenwei's avatar
zhangwenwei committed
10
11
12
from pycocotools.coco import COCO

from mmdet3d.datasets import build_dataset
zhangshilong's avatar
zhangshilong committed
13
14
from mmdet3d.structures.ops import box_np_ops as box_np_ops
from mmdet.evaluation import bbox_overlaps
zhangwenwei's avatar
zhangwenwei committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123


def _poly2mask(mask_ann, img_h, img_w):
    if isinstance(mask_ann, list):
        # polygon -- a single object might consist of multiple parts
        # we merge all parts into one mask rle code
        rles = maskUtils.frPyObjects(mask_ann, img_h, img_w)
        rle = maskUtils.merge(rles)
    elif isinstance(mask_ann['counts'], list):
        # uncompressed RLE
        rle = maskUtils.frPyObjects(mask_ann, img_h, img_w)
    else:
        # rle
        rle = mask_ann
    mask = maskUtils.decode(rle)
    return mask


def _parse_coco_ann_info(ann_info):
    gt_bboxes = []
    gt_labels = []
    gt_bboxes_ignore = []
    gt_masks_ann = []

    for i, ann in enumerate(ann_info):
        if ann.get('ignore', False):
            continue
        x1, y1, w, h = ann['bbox']
        if ann['area'] <= 0:
            continue
        bbox = [x1, y1, x1 + w, y1 + h]
        if ann.get('iscrowd', False):
            gt_bboxes_ignore.append(bbox)
        else:
            gt_bboxes.append(bbox)
            gt_masks_ann.append(ann['segmentation'])

    if gt_bboxes:
        gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
        gt_labels = np.array(gt_labels, dtype=np.int64)
    else:
        gt_bboxes = np.zeros((0, 4), dtype=np.float32)
        gt_labels = np.array([], dtype=np.int64)

    if gt_bboxes_ignore:
        gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32)
    else:
        gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)

    ann = dict(
        bboxes=gt_bboxes, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann)

    return ann


def crop_image_patch_v2(pos_proposals, pos_assigned_gt_inds, gt_masks):
    import torch
    from torch.nn.modules.utils import _pair
    device = pos_proposals.device
    num_pos = pos_proposals.size(0)
    fake_inds = (
        torch.arange(num_pos,
                     device=device).to(dtype=pos_proposals.dtype)[:, None])
    rois = torch.cat([fake_inds, pos_proposals], dim=1)  # Nx5
    mask_size = _pair(28)
    rois = rois.to(device=device)
    gt_masks_th = (
        torch.from_numpy(gt_masks).to(device).index_select(
            0, pos_assigned_gt_inds).to(dtype=rois.dtype))
    # Use RoIAlign could apparently accelerate the training (~0.1s/iter)
    targets = (
        roi_align(gt_masks_th, rois, mask_size[::-1], 1.0, 0, True).squeeze(1))
    return targets


def crop_image_patch(pos_proposals, gt_masks, pos_assigned_gt_inds, org_img):
    num_pos = pos_proposals.shape[0]
    masks = []
    img_patches = []
    for i in range(num_pos):
        gt_mask = gt_masks[pos_assigned_gt_inds[i]]
        bbox = pos_proposals[i, :].astype(np.int32)
        x1, y1, x2, y2 = bbox
        w = np.maximum(x2 - x1 + 1, 1)
        h = np.maximum(y2 - y1 + 1, 1)

        mask_patch = gt_mask[y1:y1 + h, x1:x1 + w]
        masked_img = gt_mask[..., None] * org_img
        img_patch = masked_img[y1:y1 + h, x1:x1 + w]

        img_patches.append(img_patch)
        masks.append(mask_patch)
    return img_patches, masks


def create_groundtruth_database(dataset_class_name,
                                data_path,
                                info_prefix,
                                info_path=None,
                                mask_anno_path=None,
                                used_classes=None,
                                database_save_path=None,
                                db_info_save_path=None,
                                relative_path=True,
                                add_rgb=False,
                                lidar_only=False,
                                bev_only=False,
                                coors_range=None,
                                with_mask=False):
liyinhao's avatar
liyinhao committed
124
125
126
    """Given the raw data, generate the ground truth database.

    Args:
127
        dataset_class_name (str): Name of the input dataset.
liyinhao's avatar
liyinhao committed
128
129
        data_path (str): Path of the data.
        info_prefix (str): Prefix of the info file.
130
        info_path (str, optional): Path of the info file.
liyinhao's avatar
liyinhao committed
131
            Default: None.
132
        mask_anno_path (str, optional): Path of the mask_anno.
liyinhao's avatar
liyinhao committed
133
            Default: None.
134
        used_classes (list[str], optional): Classes have been used.
liyinhao's avatar
liyinhao committed
135
            Default: None.
136
        database_save_path (str, optional): Path to save database.
liyinhao's avatar
liyinhao committed
137
            Default: None.
138
        db_info_save_path (str, optional): Path to save db_info.
liyinhao's avatar
liyinhao committed
139
            Default: None.
140
        relative_path (bool, optional): Whether to use relative path.
liyinhao's avatar
liyinhao committed
141
            Default: True.
142
        with_mask (bool, optional): Whether to use mask.
liyinhao's avatar
liyinhao committed
143
144
            Default: False.
    """
zhangwenwei's avatar
zhangwenwei committed
145
146
    print(f'Create GT Database of {dataset_class_name}')
    dataset_cfg = dict(
147
        type=dataset_class_name, data_root=data_path, ann_file=info_path)
zhangwenwei's avatar
zhangwenwei committed
148
    if dataset_class_name == 'KittiDataset':
liyinhao's avatar
liyinhao committed
149
        file_client_args = dict(backend='disk')
zhangwenwei's avatar
zhangwenwei committed
150
        dataset_cfg.update(
liyinhao's avatar
liyinhao committed
151
            test_mode=False,
zhangwenwei's avatar
zhangwenwei committed
152
153
154
155
156
157
            split='training',
            modality=dict(
                use_lidar=True,
                use_depth=False,
                use_lidar_intensity=True,
                use_camera=with_mask,
liyinhao's avatar
liyinhao committed
158
159
160
161
            ),
            pipeline=[
                dict(
                    type='LoadPointsFromFile',
meng-zha's avatar
meng-zha committed
162
                    coord_type='LIDAR',
liyinhao's avatar
liyinhao committed
163
164
165
166
167
168
169
170
171
                    load_dim=4,
                    use_dim=4,
                    file_client_args=file_client_args),
                dict(
                    type='LoadAnnotations3D',
                    with_bbox_3d=True,
                    with_label_3d=True,
                    file_client_args=file_client_args)
            ])
liyinhao's avatar
liyinhao committed
172

liyinhao's avatar
liyinhao committed
173
    elif dataset_class_name == 'NuScenesDataset':
174
175
176
177
        dataset_cfg.update(
            use_valid_flag=True,
            pipeline=[
                dict(
178
                    type='LoadPointsFromFile',
meng-zha's avatar
meng-zha committed
179
                    coord_type='LIDAR',
180
181
182
183
                    load_dim=5,
                    use_dim=5),
                dict(
                    type='LoadPointsFromMultiSweeps',
184
185
186
187
188
189
190
191
192
                    sweeps_num=10,
                    use_dim=[0, 1, 2, 3, 4],
                    pad_empty_sweeps=True,
                    remove_close=True),
                dict(
                    type='LoadAnnotations3D',
                    with_bbox_3d=True,
                    with_label_3d=True)
            ])
Wenwei Zhang's avatar
Wenwei Zhang committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

    elif dataset_class_name == 'WaymoDataset':
        file_client_args = dict(backend='disk')
        dataset_cfg.update(
            test_mode=False,
            split='training',
            modality=dict(
                use_lidar=True,
                use_depth=False,
                use_lidar_intensity=True,
                use_camera=False,
            ),
            pipeline=[
                dict(
                    type='LoadPointsFromFile',
meng-zha's avatar
meng-zha committed
208
                    coord_type='LIDAR',
Wenwei Zhang's avatar
Wenwei Zhang committed
209
                    load_dim=6,
210
                    use_dim=6,
Wenwei Zhang's avatar
Wenwei Zhang committed
211
212
213
214
215
216
217
218
                    file_client_args=file_client_args),
                dict(
                    type='LoadAnnotations3D',
                    with_bbox_3d=True,
                    with_label_3d=True,
                    file_client_args=file_client_args)
            ])

zhangwenwei's avatar
zhangwenwei committed
219
220
221
    dataset = build_dataset(dataset_cfg)

    if database_save_path is None:
liyinhao's avatar
liyinhao committed
222
        database_save_path = osp.join(data_path, f'{info_prefix}_gt_database')
zhangwenwei's avatar
zhangwenwei committed
223
    if db_info_save_path is None:
liyinhao's avatar
liyinhao committed
224
225
        db_info_save_path = osp.join(data_path,
                                     f'{info_prefix}_dbinfos_train.pkl')
zhangwenwei's avatar
zhangwenwei committed
226
227
228
229
230
231
232
233
234
235
236
237
    mmcv.mkdir_or_exist(database_save_path)
    all_db_infos = dict()
    if with_mask:
        coco = COCO(osp.join(data_path, mask_anno_path))
        imgIds = coco.getImgIds()
        file2id = dict()
        for i in imgIds:
            info = coco.loadImgs([i])[0]
            file2id.update({info['file_name']: i})

    group_counter = 0
    for j in track_iter_progress(list(range(len(dataset)))):
liyinhao's avatar
liyinhao committed
238
239
240
241
242
        input_dict = dataset.get_data_info(j)
        dataset.pre_pipeline(input_dict)
        example = dataset.pipeline(input_dict)
        annos = example['ann_info']
        image_idx = example['sample_idx']
meng-zha's avatar
meng-zha committed
243
        points = example['points'].tensor.numpy()
liyinhao's avatar
liyinhao committed
244
        gt_boxes_3d = annos['gt_bboxes_3d'].tensor.numpy()
zhangwenwei's avatar
zhangwenwei committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
        names = annos['gt_names']
        group_dict = dict()
        if 'group_ids' in annos:
            group_ids = annos['group_ids']
        else:
            group_ids = np.arange(gt_boxes_3d.shape[0], dtype=np.int64)
        difficulty = np.zeros(gt_boxes_3d.shape[0], dtype=np.int32)
        if 'difficulty' in annos:
            difficulty = annos['difficulty']

        num_obj = gt_boxes_3d.shape[0]
        point_indices = box_np_ops.points_in_rbbox(points, gt_boxes_3d)

        if with_mask:
            # prepare masks
            gt_boxes = annos['gt_bboxes']
liyinhao's avatar
liyinhao committed
261
            img_path = osp.split(example['img_info']['filename'])[-1]
zhangwenwei's avatar
zhangwenwei committed
262
            if img_path not in file2id.keys():
liyinhao's avatar
liyinhao committed
263
                print(f'skip image {img_path} for empty mask')
zhangwenwei's avatar
zhangwenwei committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
                continue
            img_id = file2id[img_path]
            kins_annIds = coco.getAnnIds(imgIds=img_id)
            kins_raw_info = coco.loadAnns(kins_annIds)
            kins_ann_info = _parse_coco_ann_info(kins_raw_info)
            h, w = annos['img_shape'][:2]
            gt_masks = [
                _poly2mask(mask, h, w) for mask in kins_ann_info['masks']
            ]
            # get mask inds based on iou mapping
            bbox_iou = bbox_overlaps(kins_ann_info['bboxes'], gt_boxes)
            mask_inds = bbox_iou.argmax(axis=0)
            valid_inds = (bbox_iou.max(axis=0) > 0.5)

            # mask the image
            # use more precise crop when it is ready
            # object_img_patches = np.ascontiguousarray(
            #     np.stack(object_img_patches, axis=0).transpose(0, 3, 1, 2))
            # crop image patches using roi_align
            # object_img_patches = crop_image_patch_v2(
            #     torch.Tensor(gt_boxes),
            #     torch.Tensor(mask_inds).long(), object_img_patches)
            object_img_patches, object_masks = crop_image_patch(
                gt_boxes, gt_masks, mask_inds, annos['img'])

        for i in range(num_obj):
            filename = f'{image_idx}_{names[i]}_{i}.bin'
liyinhao's avatar
liyinhao committed
291
292
            abs_filepath = osp.join(database_save_path, filename)
            rel_filepath = osp.join(f'{info_prefix}_gt_database', filename)
zhangwenwei's avatar
zhangwenwei committed
293
294
295
296
297
298
299
300
301

            # save point clouds and image patches for each object
            gt_points = points[point_indices[:, i]]
            gt_points[:, :3] -= gt_boxes_3d[i, :3]

            if with_mask:
                if object_masks[i].sum() == 0 or not valid_inds[i]:
                    # Skip object for empty or invalid mask
                    continue
liyinhao's avatar
liyinhao committed
302
303
                img_patch_path = abs_filepath + '.png'
                mask_patch_path = abs_filepath + '.mask.png'
zhangwenwei's avatar
zhangwenwei committed
304
305
306
                mmcv.imwrite(object_img_patches[i], img_patch_path)
                mmcv.imwrite(object_masks[i], mask_patch_path)

liyinhao's avatar
liyinhao committed
307
            with open(abs_filepath, 'w') as f:
zhangwenwei's avatar
zhangwenwei committed
308
309
310
311
312
                gt_points.tofile(f)

            if (used_classes is None) or names[i] in used_classes:
                db_info = {
                    'name': names[i],
liyinhao's avatar
liyinhao committed
313
                    'path': rel_filepath,
zhangwenwei's avatar
zhangwenwei committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
                    'image_idx': image_idx,
                    'gt_idx': i,
                    'box3d_lidar': gt_boxes_3d[i],
                    'num_points_in_gt': gt_points.shape[0],
                    'difficulty': difficulty[i],
                }
                local_group_id = group_ids[i]
                # if local_group_id >= 0:
                if local_group_id not in group_dict:
                    group_dict[local_group_id] = group_counter
                    group_counter += 1
                db_info['group_id'] = group_dict[local_group_id]
                if 'score' in annos:
                    db_info['score'] = annos['score'][i]
                if with_mask:
                    db_info.update({'box2d_camera': gt_boxes[i]})
                if names[i] in all_db_infos:
                    all_db_infos[names[i]].append(db_info)
                else:
                    all_db_infos[names[i]] = [db_info]

    for k, v in all_db_infos.items():
        print(f'load {len(v)} {k} database infos')

    with open(db_info_save_path, 'wb') as f:
        pickle.dump(all_db_infos, f)
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624


class GTDatabaseCreater:
    """Given the raw data, generate the ground truth database. This is the
    parallel version. For serialized version, please refer to
    `create_groundtruth_database`

    Args:
        dataset_class_name (str): Name of the input dataset.
        data_path (str): Path of the data.
        info_prefix (str): Prefix of the info file.
        info_path (str, optional): Path of the info file.
            Default: None.
        mask_anno_path (str, optional): Path of the mask_anno.
            Default: None.
        used_classes (list[str], optional): Classes have been used.
            Default: None.
        database_save_path (str, optional): Path to save database.
            Default: None.
        db_info_save_path (str, optional): Path to save db_info.
            Default: None.
        relative_path (bool, optional): Whether to use relative path.
            Default: True.
        with_mask (bool, optional): Whether to use mask.
            Default: False.
        num_worker (int, optional): the number of parallel workers to use.
            Default: 8.
    """

    def __init__(self,
                 dataset_class_name,
                 data_path,
                 info_prefix,
                 info_path=None,
                 mask_anno_path=None,
                 used_classes=None,
                 database_save_path=None,
                 db_info_save_path=None,
                 relative_path=True,
                 add_rgb=False,
                 lidar_only=False,
                 bev_only=False,
                 coors_range=None,
                 with_mask=False,
                 num_worker=8) -> None:
        self.dataset_class_name = dataset_class_name
        self.data_path = data_path
        self.info_prefix = info_prefix
        self.info_path = info_path
        self.mask_anno_path = mask_anno_path
        self.used_classes = used_classes
        self.database_save_path = database_save_path
        self.db_info_save_path = db_info_save_path
        self.relative_path = relative_path
        self.add_rgb = add_rgb
        self.lidar_only = lidar_only
        self.bev_only = bev_only
        self.coors_range = coors_range
        self.with_mask = with_mask
        self.num_worker = num_worker
        self.pipeline = None

    def create_single(self, input_dict):
        group_counter = 0
        single_db_infos = dict()
        example = self.pipeline(input_dict)
        annos = example['ann_info']
        image_idx = example['sample_idx']
        points = example['points'].tensor.numpy()
        gt_boxes_3d = annos['gt_bboxes_3d'].tensor.numpy()
        names = annos['gt_names']
        group_dict = dict()
        if 'group_ids' in annos:
            group_ids = annos['group_ids']
        else:
            group_ids = np.arange(gt_boxes_3d.shape[0], dtype=np.int64)
        difficulty = np.zeros(gt_boxes_3d.shape[0], dtype=np.int32)
        if 'difficulty' in annos:
            difficulty = annos['difficulty']

        num_obj = gt_boxes_3d.shape[0]
        point_indices = box_np_ops.points_in_rbbox(points, gt_boxes_3d)

        if self.with_mask:
            # prepare masks
            gt_boxes = annos['gt_bboxes']
            img_path = osp.split(example['img_info']['filename'])[-1]
            if img_path not in self.file2id.keys():
                print(f'skip image {img_path} for empty mask')
                return single_db_infos
            img_id = self.file2id[img_path]
            kins_annIds = self.coco.getAnnIds(imgIds=img_id)
            kins_raw_info = self.coco.loadAnns(kins_annIds)
            kins_ann_info = _parse_coco_ann_info(kins_raw_info)
            h, w = annos['img_shape'][:2]
            gt_masks = [
                _poly2mask(mask, h, w) for mask in kins_ann_info['masks']
            ]
            # get mask inds based on iou mapping
            bbox_iou = bbox_overlaps(kins_ann_info['bboxes'], gt_boxes)
            mask_inds = bbox_iou.argmax(axis=0)
            valid_inds = (bbox_iou.max(axis=0) > 0.5)

            # mask the image
            # use more precise crop when it is ready
            # object_img_patches = np.ascontiguousarray(
            #     np.stack(object_img_patches, axis=0).transpose(0, 3, 1, 2))
            # crop image patches using roi_align
            # object_img_patches = crop_image_patch_v2(
            #     torch.Tensor(gt_boxes),
            #     torch.Tensor(mask_inds).long(), object_img_patches)
            object_img_patches, object_masks = crop_image_patch(
                gt_boxes, gt_masks, mask_inds, annos['img'])

        for i in range(num_obj):
            filename = f'{image_idx}_{names[i]}_{i}.bin'
            abs_filepath = osp.join(self.database_save_path, filename)
            rel_filepath = osp.join(f'{self.info_prefix}_gt_database',
                                    filename)

            # save point clouds and image patches for each object
            gt_points = points[point_indices[:, i]]
            gt_points[:, :3] -= gt_boxes_3d[i, :3]

            if self.with_mask:
                if object_masks[i].sum() == 0 or not valid_inds[i]:
                    # Skip object for empty or invalid mask
                    continue
                img_patch_path = abs_filepath + '.png'
                mask_patch_path = abs_filepath + '.mask.png'
                mmcv.imwrite(object_img_patches[i], img_patch_path)
                mmcv.imwrite(object_masks[i], mask_patch_path)

            with open(abs_filepath, 'w') as f:
                gt_points.tofile(f)

            if (self.used_classes is None) or names[i] in self.used_classes:
                db_info = {
                    'name': names[i],
                    'path': rel_filepath,
                    'image_idx': image_idx,
                    'gt_idx': i,
                    'box3d_lidar': gt_boxes_3d[i],
                    'num_points_in_gt': gt_points.shape[0],
                    'difficulty': difficulty[i],
                }
                local_group_id = group_ids[i]
                # if local_group_id >= 0:
                if local_group_id not in group_dict:
                    group_dict[local_group_id] = group_counter
                    group_counter += 1
                db_info['group_id'] = group_dict[local_group_id]
                if 'score' in annos:
                    db_info['score'] = annos['score'][i]
                if self.with_mask:
                    db_info.update({'box2d_camera': gt_boxes[i]})
                if names[i] in single_db_infos:
                    single_db_infos[names[i]].append(db_info)
                else:
                    single_db_infos[names[i]] = [db_info]

        return single_db_infos

    def create(self):
        print(f'Create GT Database of {self.dataset_class_name}')
        dataset_cfg = dict(
            type=self.dataset_class_name,
            data_root=self.data_path,
            ann_file=self.info_path)
        if self.dataset_class_name == 'KittiDataset':
            file_client_args = dict(backend='disk')
            dataset_cfg.update(
                test_mode=False,
                split='training',
                modality=dict(
                    use_lidar=True,
                    use_depth=False,
                    use_lidar_intensity=True,
                    use_camera=self.with_mask,
                ),
                pipeline=[
                    dict(
                        type='LoadPointsFromFile',
                        coord_type='LIDAR',
                        load_dim=4,
                        use_dim=4,
                        file_client_args=file_client_args),
                    dict(
                        type='LoadAnnotations3D',
                        with_bbox_3d=True,
                        with_label_3d=True,
                        file_client_args=file_client_args)
                ])

        elif self.dataset_class_name == 'NuScenesDataset':
            dataset_cfg.update(
                use_valid_flag=True,
                pipeline=[
                    dict(
                        type='LoadPointsFromFile',
                        coord_type='LIDAR',
                        load_dim=5,
                        use_dim=5),
                    dict(
                        type='LoadPointsFromMultiSweeps',
                        sweeps_num=10,
                        use_dim=[0, 1, 2, 3, 4],
                        pad_empty_sweeps=True,
                        remove_close=True),
                    dict(
                        type='LoadAnnotations3D',
                        with_bbox_3d=True,
                        with_label_3d=True)
                ])

        elif self.dataset_class_name == 'WaymoDataset':
            file_client_args = dict(backend='disk')
            dataset_cfg.update(
                test_mode=False,
                split='training',
                modality=dict(
                    use_lidar=True,
                    use_depth=False,
                    use_lidar_intensity=True,
                    use_camera=False,
                ),
                pipeline=[
                    dict(
                        type='LoadPointsFromFile',
                        coord_type='LIDAR',
                        load_dim=6,
                        use_dim=6,
                        file_client_args=file_client_args),
                    dict(
                        type='LoadAnnotations3D',
                        with_bbox_3d=True,
                        with_label_3d=True,
                        file_client_args=file_client_args)
                ])

        dataset = build_dataset(dataset_cfg)
        self.pipeline = dataset.pipeline
        if self.database_save_path is None:
            self.database_save_path = osp.join(
                self.data_path, f'{self.info_prefix}_gt_database')
        if self.db_info_save_path is None:
            self.db_info_save_path = osp.join(
                self.data_path, f'{self.info_prefix}_dbinfos_train.pkl')
        mmcv.mkdir_or_exist(self.database_save_path)
        if self.with_mask:
            self.coco = COCO(osp.join(self.data_path, self.mask_anno_path))
            imgIds = self.coco.getImgIds()
            self.file2id = dict()
            for i in imgIds:
                info = self.coco.loadImgs([i])[0]
                self.file2id.update({info['file_name']: i})

        def loop_dataset(i):
            input_dict = dataset.get_data_info(i)
            dataset.pre_pipeline(input_dict)
            return input_dict

        multi_db_infos = mmcv.track_parallel_progress(
            self.create_single, ((loop_dataset(i)
                                  for i in range(len(dataset))), len(dataset)),
            self.num_worker)
        print('Make global unique group id')
        group_counter_offset = 0
        all_db_infos = dict()
        for single_db_infos in track_iter_progress(multi_db_infos):
            group_id = -1
            for name, name_db_infos in single_db_infos.items():
                for db_info in name_db_infos:
                    group_id = max(group_id, db_info['group_id'])
                    db_info['group_id'] += group_counter_offset
                if name not in all_db_infos:
                    all_db_infos[name] = []
                all_db_infos[name].extend(name_db_infos)
            group_counter_offset += (group_id + 1)

        for k, v in all_db_infos.items():
            print(f'load {len(v)} {k} database infos')

        with open(self.db_info_save_path, 'wb') as f:
            pickle.dump(all_db_infos, f)