primitive_head.py 44.1 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
jshilong's avatar
jshilong committed
2
3
from typing import Dict, List, Optional

encore-zhou's avatar
encore-zhou committed
4
5
import torch
from mmcv.cnn import ConvModule
6
from mmcv.ops import furthest_point_sample
7
from mmcv.runner import BaseModule
jshilong's avatar
jshilong committed
8
from mmengine import InstanceData
encore-zhou's avatar
encore-zhou committed
9
10
11
from torch import nn as nn
from torch.nn import functional as F

zhangshilong's avatar
zhangshilong committed
12
from mmdet3d.models.layers import VoteModule, build_sa_module
13
from mmdet3d.registry import MODELS
zhangshilong's avatar
zhangshilong committed
14
15
from mmdet3d.structures import Det3DDataSample
from mmdet.models.utils import multi_apply
encore-zhou's avatar
encore-zhou committed
16
17


18
@MODELS.register_module()
19
class PrimitiveHead(BaseModule):
encore-zhou's avatar
encore-zhou committed
20
21
22
23
24
25
    r"""Primitive head of `H3DNet <https://arxiv.org/abs/2006.05682>`_.

    Args:
        num_dims (int): The dimension of primitive semantic information.
        num_classes (int): The number of class.
        primitive_mode (str): The mode of primitive module,
26
            available mode ['z', 'xy', 'line'].
encore-zhou's avatar
encore-zhou committed
27
28
29
30
        bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and
            decoding boxes.
        train_cfg (dict): Config for training.
        test_cfg (dict): Config for testing.
31
        vote_module_cfg (dict): Config of VoteModule for point-wise votes.
encore-zhou's avatar
encore-zhou committed
32
33
34
35
        vote_aggregation_cfg (dict): Config of vote aggregation layer.
        feat_channels (tuple[int]): Convolution channels of
            prediction layer.
        upper_thresh (float): Threshold for line matching.
36
        surface_thresh (float): Threshold for surface matching.
encore-zhou's avatar
encore-zhou committed
37
38
39
40
41
42
43
44
        conv_cfg (dict): Config of convolution in prediction layer.
        norm_cfg (dict): Config of BN in prediction layer.
        objectness_loss (dict): Config of objectness loss.
        center_loss (dict): Config of center loss.
        semantic_loss (dict): Config of point-wise semantic segmentation loss.
    """

    def __init__(self,
jshilong's avatar
jshilong committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
                 num_dims: int,
                 num_classes: int,
                 primitive_mode: str,
                 train_cfg: dict = None,
                 test_cfg: dict = None,
                 vote_module_cfg: dict = None,
                 vote_aggregation_cfg: dict = None,
                 feat_channels: tuple = (128, 128),
                 upper_thresh: float = 100.0,
                 surface_thresh: float = 0.5,
                 conv_cfg: dict = dict(type='Conv1d'),
                 norm_cfg: dict = dict(type='BN1d'),
                 objectness_loss: dict = None,
                 center_loss: dict = None,
                 semantic_reg_loss: dict = None,
                 semantic_cls_loss: dict = None,
                 init_cfg: dict = None):
62
        super(PrimitiveHead, self).__init__(init_cfg=init_cfg)
jshilong's avatar
jshilong committed
63
        # bounding boxes centers,  face centers and edge centers
encore-zhou's avatar
encore-zhou committed
64
65
66
67
68
69
70
        assert primitive_mode in ['z', 'xy', 'line']
        # The dimension of primitive semantic information.
        self.num_dims = num_dims
        self.num_classes = num_classes
        self.primitive_mode = primitive_mode
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
71
        self.gt_per_seed = vote_module_cfg['gt_per_seed']
encore-zhou's avatar
encore-zhou committed
72
73
74
75
        self.num_proposal = vote_aggregation_cfg['num_point']
        self.upper_thresh = upper_thresh
        self.surface_thresh = surface_thresh

jshilong's avatar
jshilong committed
76
77
78
79
        self.loss_objectness = MODELS.build(objectness_loss)
        self.loss_center = MODELS.build(center_loss)
        self.loss_semantic_reg = MODELS.build(semantic_reg_loss)
        self.loss_semantic_cls = MODELS.build(semantic_cls_loss)
encore-zhou's avatar
encore-zhou committed
80

81
        assert vote_aggregation_cfg['mlp_channels'][0] == vote_module_cfg[
encore-zhou's avatar
encore-zhou committed
82
83
84
85
            'in_channels']

        # Primitive existence flag prediction
        self.flag_conv = ConvModule(
86
87
            vote_module_cfg['conv_channels'][-1],
            vote_module_cfg['conv_channels'][-1] // 2,
encore-zhou's avatar
encore-zhou committed
88
89
90
91
92
93
94
            1,
            padding=0,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            bias=True,
            inplace=True)
        self.flag_pred = torch.nn.Conv1d(
95
            vote_module_cfg['conv_channels'][-1] // 2, 2, 1)
encore-zhou's avatar
encore-zhou committed
96

97
        self.vote_module = VoteModule(**vote_module_cfg)
98
        self.vote_aggregation = build_sa_module(vote_aggregation_cfg)
encore-zhou's avatar
encore-zhou committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

        prev_channel = vote_aggregation_cfg['mlp_channels'][-1]
        conv_pred_list = list()
        for k in range(len(feat_channels)):
            conv_pred_list.append(
                ConvModule(
                    prev_channel,
                    feat_channels[k],
                    1,
                    padding=0,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    bias=True,
                    inplace=True))
            prev_channel = feat_channels[k]
        self.conv_pred = nn.Sequential(*conv_pred_list)

        conv_out_channel = 3 + num_dims + num_classes
        self.conv_pred.add_module('conv_out',
                                  nn.Conv1d(prev_channel, conv_out_channel, 1))

jshilong's avatar
jshilong committed
120
121
122
123
124
125
126
127
128
129
    @property
    def sample_mode(self):
        if self.training:
            sample_mode = self.train_cfg.sample_mode
        else:
            sample_mode = self.test_cfg.sample_mode
        assert sample_mode in ['vote', 'seed', 'random']
        return sample_mode

    def forward(self, feats_dict):
encore-zhou's avatar
encore-zhou committed
130
131
132
133
        """Forward pass.

        Args:
            feats_dict (dict): Feature dict from backbone.
jshilong's avatar
jshilong committed
134

encore-zhou's avatar
encore-zhou committed
135
136
137
138

        Returns:
            dict: Predictions of primitive head.
        """
jshilong's avatar
jshilong committed
139
        sample_mode = self.sample_mode
encore-zhou's avatar
encore-zhou committed
140
141
142
143
144
145
146
147
148
149
150

        seed_points = feats_dict['fp_xyz_net0'][-1]
        seed_features = feats_dict['hd_feature']
        results = {}

        primitive_flag = self.flag_conv(seed_features)
        primitive_flag = self.flag_pred(primitive_flag)

        results['pred_flag_' + self.primitive_mode] = primitive_flag

        # 1. generate vote_points from seed_points
151
152
        vote_points, vote_features, _ = self.vote_module(
            seed_points, seed_features)
encore-zhou's avatar
encore-zhou committed
153
154
155
156
        results['vote_' + self.primitive_mode] = vote_points
        results['vote_features_' + self.primitive_mode] = vote_features

        # 2. aggregate vote_points
jshilong's avatar
jshilong committed
157
        if sample_mode == 'vote':
encore-zhou's avatar
encore-zhou committed
158
159
            # use fps in vote_aggregation
            sample_indices = None
jshilong's avatar
jshilong committed
160
        elif sample_mode == 'seed':
encore-zhou's avatar
encore-zhou committed
161
162
163
            # FPS on seed and choose the votes corresponding to the seeds
            sample_indices = furthest_point_sample(seed_points,
                                                   self.num_proposal)
jshilong's avatar
jshilong committed
164
        elif sample_mode == 'random':
encore-zhou's avatar
encore-zhou committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
            # Random sampling from the votes
            batch_size, num_seed = seed_points.shape[:2]
            sample_indices = torch.randint(
                0,
                num_seed, (batch_size, self.num_proposal),
                dtype=torch.int32,
                device=seed_points.device)
        else:
            raise NotImplementedError('Unsupported sample mod!')

        vote_aggregation_ret = self.vote_aggregation(vote_points,
                                                     vote_features,
                                                     sample_indices)
        aggregated_points, features, aggregated_indices = vote_aggregation_ret
        results['aggregated_points_' + self.primitive_mode] = aggregated_points
        results['aggregated_features_' + self.primitive_mode] = features
        results['aggregated_indices_' +
                self.primitive_mode] = aggregated_indices

        # 3. predict primitive offsets and semantic information
        predictions = self.conv_pred(features)

        # 4. decode predictions
        decode_ret = self.primitive_decode_scores(predictions,
                                                  aggregated_points)
        results.update(decode_ret)

        center, pred_ind = self.get_primitive_center(
            primitive_flag, decode_ret['center_' + self.primitive_mode])

        results['pred_' + self.primitive_mode + '_ind'] = pred_ind
        results['pred_' + self.primitive_mode + '_center'] = center
        return results

jshilong's avatar
jshilong committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    def loss(self, points: List[torch.Tensor], feats_dict: Dict[str,
                                                                torch.Tensor],
             batch_data_samples: List[Det3DDataSample], **kwargs) -> dict:
        """
        Args:
            points (list[tensor]): Points cloud of multiple samples.
            feats_dict (dict): Predictions from backbone or FPN.
            batch_data_samples (list[:obj:`Det3DDataSample`]): Each item
                contains the meta information of each sample and
                corresponding annotations.

        Returns:
            dict:  A dictionary of loss components.
        """
        preds = self(feats_dict)
        feats_dict.update(preds)

        batch_gt_instance_3d = []
        batch_gt_instances_ignore = []
        batch_input_metas = []
        batch_pts_semantic_mask = []
        batch_pts_instance_mask = []
        for data_sample in batch_data_samples:
            batch_input_metas.append(data_sample.metainfo)
            batch_gt_instance_3d.append(data_sample.gt_instances_3d)
            batch_gt_instances_ignore.append(
                data_sample.get('ignored_instances', None))
            batch_pts_semantic_mask.append(
                data_sample.gt_pts_seg.get('pts_semantic_mask', None))
            batch_pts_instance_mask.append(
                data_sample.gt_pts_seg.get('pts_instance_mask', None))

        loss_inputs = (points, feats_dict, batch_gt_instance_3d)
        losses = self.loss_by_feat(
            *loss_inputs,
            batch_pts_semantic_mask=batch_pts_semantic_mask,
            batch_pts_instance_mask=batch_pts_instance_mask,
            batch_gt_instances_ignore=batch_gt_instances_ignore,
        )
        return losses

    def loss_by_feat(
            self,
            points: List[torch.Tensor],
            feats_dict: dict,
            batch_gt_instances_3d: List[InstanceData],
            batch_pts_semantic_mask: Optional[List[torch.Tensor]] = None,
            batch_pts_instance_mask: Optional[List[torch.Tensor]] = None,
            **kwargs):
encore-zhou's avatar
encore-zhou committed
248
249
250
251
        """Compute loss.

        Args:
            points (list[torch.Tensor]): Input points.
jshilong's avatar
jshilong committed
252
253
254
255
256
257
258
259
260
261
            feats_dict (dict): Predictions of previous modules.
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instances. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_pts_semantic_mask (list[tensor]): Semantic mask
                of points cloud. Defaults to None.
            batch_pts_semantic_mask (list[tensor]): Instance mask
                of points cloud. Defaults to None.
            batch_input_metas (list[dict]): Contain pcd and img's meta info.
            ret_target (bool): Return targets or not. Defaults to False.
encore-zhou's avatar
encore-zhou committed
262
263
264
265

        Returns:
            dict: Losses of Primitive Head.
        """
jshilong's avatar
jshilong committed
266
267
268
269

        targets = self.get_targets(points, feats_dict, batch_gt_instances_3d,
                                   batch_pts_semantic_mask,
                                   batch_pts_instance_mask)
encore-zhou's avatar
encore-zhou committed
270
271
272
273
274
275

        (point_mask, point_offset, gt_primitive_center, gt_primitive_semantic,
         gt_sem_cls_label, gt_primitive_mask) = targets

        losses = {}
        # Compute the loss of primitive existence flag
jshilong's avatar
jshilong committed
276
277
        pred_flag = feats_dict['pred_flag_' + self.primitive_mode]
        flag_loss = self.loss_objectness(pred_flag, gt_primitive_mask.long())
encore-zhou's avatar
encore-zhou committed
278
279
280
281
        losses['flag_loss_' + self.primitive_mode] = flag_loss

        # calculate vote loss
        vote_loss = self.vote_module.get_loss(
jshilong's avatar
jshilong committed
282
283
284
            feats_dict['seed_points'],
            feats_dict['vote_' + self.primitive_mode],
            feats_dict['seed_indices'], point_mask, point_offset)
encore-zhou's avatar
encore-zhou committed
285
286
        losses['vote_loss_' + self.primitive_mode] = vote_loss

jshilong's avatar
jshilong committed
287
        num_proposal = feats_dict['aggregated_points_' +
encore-zhou's avatar
encore-zhou committed
288
                                  self.primitive_mode].shape[1]
jshilong's avatar
jshilong committed
289
        primitive_center = feats_dict['center_' + self.primitive_mode]
encore-zhou's avatar
encore-zhou committed
290
        if self.primitive_mode != 'line':
jshilong's avatar
jshilong committed
291
            primitive_semantic = feats_dict['size_residuals_' +
encore-zhou's avatar
encore-zhou committed
292
293
294
                                            self.primitive_mode].contiguous()
        else:
            primitive_semantic = None
jshilong's avatar
jshilong committed
295
        semancitc_scores = feats_dict['sem_cls_scores_' +
encore-zhou's avatar
encore-zhou committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
                                      self.primitive_mode].transpose(2, 1)

        gt_primitive_mask = gt_primitive_mask / \
            (gt_primitive_mask.sum() + 1e-6)
        center_loss, size_loss, sem_cls_loss = self.compute_primitive_loss(
            primitive_center, primitive_semantic, semancitc_scores,
            num_proposal, gt_primitive_center, gt_primitive_semantic,
            gt_sem_cls_label, gt_primitive_mask)
        losses['center_loss_' + self.primitive_mode] = center_loss
        losses['size_loss_' + self.primitive_mode] = size_loss
        losses['sem_loss_' + self.primitive_mode] = sem_cls_loss

        return losses

jshilong's avatar
jshilong committed
310
311
312
313
314
315
316
317
    def get_targets(
        self,
        points,
        bbox_preds: Optional[dict] = None,
        batch_gt_instances_3d: List[InstanceData] = None,
        batch_pts_semantic_mask: List[torch.Tensor] = None,
        batch_pts_instance_mask: List[torch.Tensor] = None,
    ):
encore-zhou's avatar
encore-zhou committed
318
319
320
321
        """Generate targets of primitive head.

        Args:
            points (list[torch.Tensor]): Points of each batch.
jshilong's avatar
jshilong committed
322
323
324
325
326
327
328
329
330
            bbox_preds (torch.Tensor): Bounding box predictions of
                primitive head.
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instances. It usually includes ``bboxes_3d`` and
                ``labels_3d`` attributes.
            batch_pts_semantic_mask (list[tensor]): Semantic gt mask for
                multiple images.
            batch_pts_instance_mask (list[tensor]): Instance gt mask for
                multiple images.
encore-zhou's avatar
encore-zhou committed
331
332
333
334

        Returns:
            tuple[torch.Tensor]: Targets of primitive head.
        """
jshilong's avatar
jshilong committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
        batch_gt_labels_3d = [
            gt_instances_3d.labels_3d
            for gt_instances_3d in batch_gt_instances_3d
        ]
        batch_gt_bboxes_3d = [
            gt_instances_3d.bboxes_3d
            for gt_instances_3d in batch_gt_instances_3d
        ]
        for index in range(len(batch_gt_labels_3d)):
            if len(batch_gt_labels_3d[index]) == 0:
                fake_box = batch_gt_bboxes_3d[index].tensor.new_zeros(
                    1, batch_gt_bboxes_3d[index].tensor.shape[-1])
                batch_gt_bboxes_3d[index] = batch_gt_bboxes_3d[index].new_box(
                    fake_box)
                batch_gt_labels_3d[index] = batch_gt_labels_3d[
                    index].new_zeros(1)

        if batch_pts_semantic_mask is None:
            batch_pts_semantic_mask = [
                None for _ in range(len(batch_gt_labels_3d))
            ]
            batch_pts_instance_mask = [
                None for _ in range(len(batch_gt_labels_3d))
            ]
encore-zhou's avatar
encore-zhou committed
359
360
361

        (point_mask, point_sem,
         point_offset) = multi_apply(self.get_targets_single, points,
jshilong's avatar
jshilong committed
362
363
364
                                     batch_gt_bboxes_3d, batch_gt_labels_3d,
                                     batch_pts_semantic_mask,
                                     batch_pts_instance_mask)
encore-zhou's avatar
encore-zhou committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

        point_mask = torch.stack(point_mask)
        point_sem = torch.stack(point_sem)
        point_offset = torch.stack(point_offset)

        batch_size = point_mask.shape[0]
        num_proposal = bbox_preds['aggregated_points_' +
                                  self.primitive_mode].shape[1]
        num_seed = bbox_preds['seed_points'].shape[1]
        seed_inds = bbox_preds['seed_indices'].long()
        seed_inds_expand = seed_inds.view(batch_size, num_seed,
                                          1).repeat(1, 1, 3)
        seed_gt_votes = torch.gather(point_offset, 1, seed_inds_expand)
        seed_gt_votes += bbox_preds['seed_points']
        gt_primitive_center = seed_gt_votes.view(batch_size * num_proposal, 1,
                                                 3)

        seed_inds_expand_sem = seed_inds.view(batch_size, num_seed, 1).repeat(
            1, 1, 4 + self.num_dims)
        seed_gt_sem = torch.gather(point_sem, 1, seed_inds_expand_sem)
        gt_primitive_semantic = seed_gt_sem[:, :, 3:3 + self.num_dims].view(
            batch_size * num_proposal, 1, self.num_dims).contiguous()

        gt_sem_cls_label = seed_gt_sem[:, :, -1].long()

        gt_votes_mask = torch.gather(point_mask, 1, seed_inds)

        return (point_mask, point_offset, gt_primitive_center,
                gt_primitive_semantic, gt_sem_cls_label, gt_votes_mask)

    def get_targets_single(self,
                           points,
                           gt_bboxes_3d,
                           gt_labels_3d,
                           pts_semantic_mask=None,
                           pts_instance_mask=None):
        """Generate targets of primitive head for single batch.

        Args:
            points (torch.Tensor): Points of each batch.
405
            gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth
encore-zhou's avatar
encore-zhou committed
406
407
                boxes of each batch.
            gt_labels_3d (torch.Tensor): Labels of each batch.
408
            pts_semantic_mask (torch.Tensor): Point-wise semantic
encore-zhou's avatar
encore-zhou committed
409
                label of each batch.
410
            pts_instance_mask (torch.Tensor): Point-wise instance
encore-zhou's avatar
encore-zhou committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
                label of each batch.

        Returns:
            tuple[torch.Tensor]: Targets of primitive head.
        """
        gt_bboxes_3d = gt_bboxes_3d.to(points.device)
        num_points = points.shape[0]

        point_mask = points.new_zeros(num_points)
        # Offset to the primitive center
        point_offset = points.new_zeros([num_points, 3])
        # Semantic information of primitive center
        point_sem = points.new_zeros([num_points, 3 + self.num_dims + 1])

425
426
        # Generate pts_semantic_mask and pts_instance_mask when they are None
        if pts_semantic_mask is None or pts_instance_mask is None:
427
            points2box_mask = gt_bboxes_3d.points_in_boxes_all(points)
428
429
430
431
432
433
434
435
436
437
438
            assignment = points2box_mask.argmax(1)
            background_mask = points2box_mask.max(1)[0] == 0

            if pts_semantic_mask is None:
                pts_semantic_mask = gt_labels_3d[assignment]
                pts_semantic_mask[background_mask] = self.num_classes

            if pts_instance_mask is None:
                pts_instance_mask = assignment
                pts_instance_mask[background_mask] = gt_labels_3d.shape[0]

encore-zhou's avatar
encore-zhou committed
439
        instance_flag = torch.nonzero(
Wenhao Wu's avatar
Wenhao Wu committed
440
            pts_semantic_mask != self.num_classes, as_tuple=False).squeeze(1)
encore-zhou's avatar
encore-zhou committed
441
442
        instance_labels = pts_instance_mask[instance_flag].unique()

443
        with_yaw = gt_bboxes_3d.with_yaw
encore-zhou's avatar
encore-zhou committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        for i, i_instance in enumerate(instance_labels):
            indices = instance_flag[pts_instance_mask[instance_flag] ==
                                    i_instance]
            coords = points[indices, :3]
            cur_cls_label = pts_semantic_mask[indices][0]

            # Bbox Corners
            cur_corners = gt_bboxes_3d.corners[i]

            plane_lower_temp = points.new_tensor(
                [0, 0, 1, -cur_corners[7, -1]])
            upper_points = cur_corners[[1, 2, 5, 6]]
            refined_distance = (upper_points * plane_lower_temp[:3]).sum(dim=1)

            if self.check_horizon(upper_points) and \
                    plane_lower_temp[0] + plane_lower_temp[1] < \
                    self.train_cfg['lower_thresh']:
                plane_lower = points.new_tensor(
                    [0, 0, 1, plane_lower_temp[-1]])
                plane_upper = points.new_tensor(
                    [0, 0, 1, -torch.mean(refined_distance)])
            else:
                raise NotImplementedError('Only horizontal plane is support!')

            if self.check_dist(plane_upper, upper_points) is False:
                raise NotImplementedError(
                    'Mean distance to plane should be lower than thresh!')

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_lower, coords)

476
            # Get bottom four lines
encore-zhou's avatar
encore-zhou committed
477
478
            if self.primitive_mode == 'line':
                point2line_matching = self.match_point2line(
479
                    coords[selected], cur_corners, with_yaw, mode='bottom')
encore-zhou's avatar
encore-zhou committed
480
481
482
483
484
485
486
487
488
489

                point_mask, point_offset, point_sem = \
                    self._assign_primitive_line_targets(point_mask,
                                                        point_offset,
                                                        point_sem,
                                                        coords[selected],
                                                        indices[selected],
                                                        cur_cls_label,
                                                        point2line_matching,
                                                        cur_corners,
490
491
492
                                                        [1, 1, 0, 0],
                                                        with_yaw,
                                                        mode='bottom')
encore-zhou's avatar
encore-zhou committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506

            # Set the surface labels here
            if self.primitive_mode == 'z' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    point2plane_dist[selected].var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
                    self._assign_primitive_surface_targets(point_mask,
                                                           point_offset,
                                                           point_sem,
                                                           coords[selected],
                                                           indices[selected],
                                                           cur_cls_label,
507
508
509
                                                           cur_corners,
                                                           with_yaw,
                                                           mode='bottom')
encore-zhou's avatar
encore-zhou committed
510
511
512
513
514

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_upper, coords)

515
            # Get top four lines
encore-zhou's avatar
encore-zhou committed
516
517
            if self.primitive_mode == 'line':
                point2line_matching = self.match_point2line(
518
                    coords[selected], cur_corners, with_yaw, mode='top')
encore-zhou's avatar
encore-zhou committed
519
520
521
522
523
524
525
526
527
528

                point_mask, point_offset, point_sem = \
                    self._assign_primitive_line_targets(point_mask,
                                                        point_offset,
                                                        point_sem,
                                                        coords[selected],
                                                        indices[selected],
                                                        cur_cls_label,
                                                        point2line_matching,
                                                        cur_corners,
529
530
531
                                                        [1, 1, 0, 0],
                                                        with_yaw,
                                                        mode='top')
encore-zhou's avatar
encore-zhou committed
532
533
534
535
536
537
538
539
540
541
542
543
544

            if self.primitive_mode == 'z' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    point2plane_dist[selected].var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
                    self._assign_primitive_surface_targets(point_mask,
                                                           point_offset,
                                                           point_sem,
                                                           coords[selected],
                                                           indices[selected],
                                                           cur_cls_label,
545
546
547
                                                           cur_corners,
                                                           with_yaw,
                                                           mode='top')
encore-zhou's avatar
encore-zhou committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

            # Get left two lines
            plane_left_temp = self._get_plane_fomulation(
                cur_corners[2] - cur_corners[3],
                cur_corners[3] - cur_corners[0], cur_corners[0])

            right_points = cur_corners[[4, 5, 7, 6]]
            plane_left_temp /= torch.norm(plane_left_temp[:3])
            refined_distance = (right_points * plane_left_temp[:3]).sum(dim=1)

            if plane_left_temp[2] < self.train_cfg['lower_thresh']:
                plane_left = plane_left_temp
                plane_right = points.new_tensor([
                    plane_left_temp[0], plane_left_temp[1], plane_left_temp[2],
                    -refined_distance.mean()
                ])
            else:
                raise NotImplementedError(
                    'Normal vector of the plane should be horizontal!')

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_left, coords)

572
            # Get left four lines
encore-zhou's avatar
encore-zhou committed
573
            if self.primitive_mode == 'line':
574
575
                point2line_matching = self.match_point2line(
                    coords[selected], cur_corners, with_yaw, mode='left')
encore-zhou's avatar
encore-zhou committed
576
                point_mask, point_offset, point_sem = \
577
578
579
580
581
                    self._assign_primitive_line_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        point2line_matching[2:], cur_corners, [2, 2],
                        with_yaw, mode='left')
encore-zhou's avatar
encore-zhou committed
582
583
584
585
586
587
588

            if self.primitive_mode == 'xy' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    point2plane_dist[selected].var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
589
590
591
592
                    self._assign_primitive_surface_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        cur_corners, with_yaw, mode='left')
encore-zhou's avatar
encore-zhou committed
593
594
595
596
597

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_right, coords)

598
            # Get right four lines
encore-zhou's avatar
encore-zhou committed
599
            if self.primitive_mode == 'line':
600
601
                point2line_matching = self.match_point2line(
                    coords[selected], cur_corners, with_yaw, mode='right')
encore-zhou's avatar
encore-zhou committed
602
603

                point_mask, point_offset, point_sem = \
604
605
606
607
608
                    self._assign_primitive_line_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        point2line_matching[2:], cur_corners, [2, 2],
                        with_yaw, mode='right')
encore-zhou's avatar
encore-zhou committed
609
610
611
612
613
614
615

            if self.primitive_mode == 'xy' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    point2plane_dist[selected].var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
616
617
618
619
                    self._assign_primitive_surface_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        cur_corners, with_yaw, mode='right')
encore-zhou's avatar
encore-zhou committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

            plane_front_temp = self._get_plane_fomulation(
                cur_corners[0] - cur_corners[4],
                cur_corners[4] - cur_corners[5], cur_corners[5])

            back_points = cur_corners[[3, 2, 7, 6]]
            plane_front_temp /= torch.norm(plane_front_temp[:3])
            refined_distance = (back_points * plane_front_temp[:3]).sum(dim=1)

            if plane_front_temp[2] < self.train_cfg['lower_thresh']:
                plane_front = plane_front_temp
                plane_back = points.new_tensor([
                    plane_front_temp[0], plane_front_temp[1],
                    plane_front_temp[2], -torch.mean(refined_distance)
                ])
            else:
                raise NotImplementedError(
                    'Normal vector of the plane should be horizontal!')

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_front, coords)

            if self.primitive_mode == 'xy' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    (point2plane_dist[selected]).var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
649
650
651
652
                    self._assign_primitive_surface_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        cur_corners, with_yaw, mode='front')
encore-zhou's avatar
encore-zhou committed
653
654
655
656
657
658
659
660
661
662
663

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_back, coords)

            if self.primitive_mode == 'xy' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    point2plane_dist[selected].var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
664
665
666
667
                    self._assign_primitive_surface_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        cur_corners, with_yaw, mode='back')
encore-zhou's avatar
encore-zhou committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724

        return (point_mask, point_sem, point_offset)

    def primitive_decode_scores(self, predictions, aggregated_points):
        """Decode predicted parts to primitive head.

        Args:
            predictions (torch.Tensor): primitive pridictions of each batch.
            aggregated_points (torch.Tensor): The aggregated points
                of vote stage.

        Returns:
            Dict: Predictions of primitive head, including center,
                semantic size and semantic scores.
        """

        ret_dict = {}
        pred_transposed = predictions.transpose(2, 1)

        center = aggregated_points + pred_transposed[:, :, 0:3]
        ret_dict['center_' + self.primitive_mode] = center

        if self.primitive_mode in ['z', 'xy']:
            ret_dict['size_residuals_' + self.primitive_mode] = \
                pred_transposed[:, :, 3:3 + self.num_dims]

        ret_dict['sem_cls_scores_' + self.primitive_mode] = \
            pred_transposed[:, :, 3 + self.num_dims:]

        return ret_dict

    def check_horizon(self, points):
        """Check whether is a horizontal plane.

        Args:
            points (torch.Tensor): Points of input.

        Returns:
            Bool: Flag of result.
        """
        return (points[0][-1] == points[1][-1]) and \
               (points[1][-1] == points[2][-1]) and \
               (points[2][-1] == points[3][-1])

    def check_dist(self, plane_equ, points):
        """Whether the mean of points to plane distance is lower than thresh.

        Args:
            plane_equ (torch.Tensor): Plane to be checked.
            points (torch.Tensor): Points to be checked.

        Returns:
            Tuple: Flag of result.
        """
        return (points[:, 2] +
                plane_equ[-1]).sum() / 4.0 < self.train_cfg['lower_thresh']

725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
    def point2line_dist(self, points, pts_a, pts_b):
        """Calculate the distance from point to line.

        Args:
            points (torch.Tensor): Points of input.
            pts_a (torch.Tensor): Point on the specific line.
            pts_b (torch.Tensor): Point on the specific line.

        Returns:
            torch.Tensor: Distance between each point to line.
        """
        line_a2b = pts_b - pts_a
        line_a2pts = points - pts_a
        length = (line_a2pts * line_a2b.view(1, 3)).sum(1) / \
            line_a2b.norm()
        dist = (line_a2pts.norm(dim=1)**2 - length**2).sqrt()

        return dist

    def match_point2line(self, points, corners, with_yaw, mode='bottom'):
encore-zhou's avatar
encore-zhou committed
745
746
747
748
        """Match points to corresponding line.

        Args:
            points (torch.Tensor): Points of input.
749
750
751
752
753
            corners (torch.Tensor): Eight corners of a bounding box.
            with_yaw (Bool): Whether the boundind box is with rotation.
            mode (str, optional): Specify which line should be matched,
                available mode are ('bottom', 'top', 'left', 'right').
                Defaults to 'bottom'.
encore-zhou's avatar
encore-zhou committed
754
755
756
757

        Returns:
            Tuple: Flag of matching correspondence.
        """
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        if with_yaw:
            corners_pair = {
                'bottom': [[0, 3], [4, 7], [0, 4], [3, 7]],
                'top': [[1, 2], [5, 6], [1, 5], [2, 6]],
                'left': [[0, 1], [3, 2], [0, 1], [3, 2]],
                'right': [[4, 5], [7, 6], [4, 5], [7, 6]]
            }
            selected_list = []
            for pair_index in corners_pair[mode]:
                selected = self.point2line_dist(
                    points, corners[pair_index[0]], corners[pair_index[1]]) \
                    < self.train_cfg['line_thresh']
                selected_list.append(selected)
        else:
            xmin, ymin, _ = corners.min(0)[0]
            xmax, ymax, _ = corners.max(0)[0]
            sel1 = torch.abs(points[:, 0] -
                             xmin) < self.train_cfg['line_thresh']
            sel2 = torch.abs(points[:, 0] -
                             xmax) < self.train_cfg['line_thresh']
            sel3 = torch.abs(points[:, 1] -
                             ymin) < self.train_cfg['line_thresh']
            sel4 = torch.abs(points[:, 1] -
                             ymax) < self.train_cfg['line_thresh']
            selected_list = [sel1, sel2, sel3, sel4]
        return selected_list
encore-zhou's avatar
encore-zhou committed
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829

    def match_point2plane(self, plane, points):
        """Match points to plane.

        Args:
            plane (torch.Tensor): Equation of the plane.
            points (torch.Tensor): Points of input.

        Returns:
            Tuple: Distance of each point to the plane and
                flag of matching correspondence.
        """
        point2plane_dist = torch.abs((points * plane[:3]).sum(dim=1) +
                                     plane[-1])
        min_dist = point2plane_dist.min()
        selected = torch.abs(point2plane_dist -
                             min_dist) < self.train_cfg['dist_thresh']
        return point2plane_dist, selected

    def compute_primitive_loss(self, primitive_center, primitive_semantic,
                               semantic_scores, num_proposal,
                               gt_primitive_center, gt_primitive_semantic,
                               gt_sem_cls_label, gt_primitive_mask):
        """Compute loss of primitive module.

        Args:
            primitive_center (torch.Tensor): Pridictions of primitive center.
            primitive_semantic (torch.Tensor): Pridictions of primitive
                semantic.
            semantic_scores (torch.Tensor): Pridictions of primitive
                semantic scores.
            num_proposal (int): The number of primitive proposal.
            gt_primitive_center (torch.Tensor): Ground truth of
                primitive center.
            gt_votes_sem (torch.Tensor): Ground truth of primitive semantic.
            gt_sem_cls_label (torch.Tensor): Ground truth of primitive
                semantic class.
            gt_primitive_mask (torch.Tensor): Ground truth of primitive mask.

        Returns:
            Tuple: Loss of primitive module.
        """
        batch_size = primitive_center.shape[0]
        vote_xyz_reshape = primitive_center.view(batch_size * num_proposal, -1,
                                                 3)

jshilong's avatar
jshilong committed
830
        center_loss = self.loss_center(
encore-zhou's avatar
encore-zhou committed
831
832
833
834
835
836
837
            vote_xyz_reshape,
            gt_primitive_center,
            dst_weight=gt_primitive_mask.view(batch_size * num_proposal, 1))[1]

        if self.primitive_mode != 'line':
            size_xyz_reshape = primitive_semantic.view(
                batch_size * num_proposal, -1, self.num_dims).contiguous()
jshilong's avatar
jshilong committed
838
            size_loss = self.loss_semantic_reg(
encore-zhou's avatar
encore-zhou committed
839
840
841
842
843
844
845
846
                size_xyz_reshape,
                gt_primitive_semantic,
                dst_weight=gt_primitive_mask.view(batch_size * num_proposal,
                                                  1))[1]
        else:
            size_loss = center_loss.new_tensor(0.0)

        # Semantic cls loss
jshilong's avatar
jshilong committed
847
        sem_cls_loss = self.loss_semantic_cls(
encore-zhou's avatar
encore-zhou committed
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
            semantic_scores, gt_sem_cls_label, weight=gt_primitive_mask)

        return center_loss, size_loss, sem_cls_loss

    def get_primitive_center(self, pred_flag, center):
        """Generate primitive center from predictions.

        Args:
            pred_flag (torch.Tensor): Scores of primitive center.
            center (torch.Tensor): Pridictions of primitive center.

        Returns:
            Tuple: Primitive center and the prediction indices.
        """
        ind_normal = F.softmax(pred_flag, dim=1)
        pred_indices = (ind_normal[:, 1, :] >
                        self.surface_thresh).detach().float()
        selected = (ind_normal[:, 1, :] <=
                    self.surface_thresh).detach().float()
        offset = torch.ones_like(center) * self.upper_thresh
        center = center + offset * selected.unsqueeze(-1)
        return center, pred_indices

871
872
873
874
875
876
877
878
879
880
881
882
    def _assign_primitive_line_targets(self,
                                       point_mask,
                                       point_offset,
                                       point_sem,
                                       coords,
                                       indices,
                                       cls_label,
                                       point2line_matching,
                                       corners,
                                       center_axises,
                                       with_yaw,
                                       mode='bottom'):
encore-zhou's avatar
encore-zhou committed
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
        """Generate targets of line primitive.

        Args:
            point_mask (torch.Tensor): Tensor to store the ground
                truth of mask.
            point_offset (torch.Tensor): Tensor to store the ground
                truth of offset.
            point_sem (torch.Tensor): Tensor to store the ground
                truth of semantic.
            coords (torch.Tensor): The selected points.
            indices (torch.Tensor): Indices of the selected points.
            cls_label (int): Class label of the ground truth bounding box.
            point2line_matching (torch.Tensor): Flag indicate that
                matching line of each point.
            corners (torch.Tensor): Corners of the ground truth bounding box.
            center_axises (list[int]): Indicate in which axis the line center
                should be refined.
900
901
902
903
            with_yaw (Bool): Whether the boundind box is with rotation.
            mode (str, optional): Specify which line should be matched,
                available mode are ('bottom', 'top', 'left', 'right').
                Defaults to 'bottom'.
encore-zhou's avatar
encore-zhou committed
904
905
906
907

        Returns:
            Tuple: Targets of the line primitive.
        """
908
909
910
911
912
913
914
915
916
917
918
        corners_pair = {
            'bottom': [[0, 3], [4, 7], [0, 4], [3, 7]],
            'top': [[1, 2], [5, 6], [1, 5], [2, 6]],
            'left': [[0, 1], [3, 2]],
            'right': [[4, 5], [7, 6]]
        }
        corners_pair = corners_pair[mode]
        assert len(corners_pair) == len(point2line_matching) == len(
            center_axises)
        for line_select, center_axis, pair_index in zip(
                point2line_matching, center_axises, corners_pair):
encore-zhou's avatar
encore-zhou committed
919
920
            if line_select.sum() > self.train_cfg['num_point_line']:
                point_mask[indices[line_select]] = 1.0
921
922
923
924
925
926
927
928

                if with_yaw:
                    line_center = (corners[pair_index[0]] +
                                   corners[pair_index[1]]) / 2
                else:
                    line_center = coords[line_select].mean(dim=0)
                    line_center[center_axis] = corners[:, center_axis].mean()

encore-zhou's avatar
encore-zhou committed
929
930
931
932
933
934
935
                point_offset[indices[line_select]] = \
                    line_center - coords[line_select]
                point_sem[indices[line_select]] = \
                    point_sem.new_tensor([line_center[0], line_center[1],
                                          line_center[2], cls_label])
        return point_mask, point_offset, point_sem

936
937
938
939
940
941
942
943
944
945
    def _assign_primitive_surface_targets(self,
                                          point_mask,
                                          point_offset,
                                          point_sem,
                                          coords,
                                          indices,
                                          cls_label,
                                          corners,
                                          with_yaw,
                                          mode='bottom'):
encore-zhou's avatar
encore-zhou committed
946
947
948
949
950
951
952
953
954
955
956
957
958
        """Generate targets for primitive z and primitive xy.

        Args:
            point_mask (torch.Tensor): Tensor to store the ground
                truth of mask.
            point_offset (torch.Tensor): Tensor to store the ground
                truth of offset.
            point_sem (torch.Tensor): Tensor to store the ground
                truth of semantic.
            coords (torch.Tensor): The selected points.
            indices (torch.Tensor): Indices of the selected points.
            cls_label (int): Class label of the ground truth bounding box.
            corners (torch.Tensor): Corners of the ground truth bounding box.
959
960
961
962
963
            with_yaw (Bool): Whether the boundind box is with rotation.
            mode (str, optional): Specify which line should be matched,
                available mode are ('bottom', 'top', 'left', 'right',
                'front', 'back').
                Defaults to 'bottom'.
encore-zhou's avatar
encore-zhou committed
964
965
966
967
968

        Returns:
            Tuple: Targets of the center primitive.
        """
        point_mask[indices] = 1.0
969
970
971
972
973
974
975
976
977
        corners_pair = {
            'bottom': [0, 7],
            'top': [1, 6],
            'left': [0, 1],
            'right': [4, 5],
            'front': [0, 1],
            'back': [3, 2]
        }
        pair_index = corners_pair[mode]
encore-zhou's avatar
encore-zhou committed
978
        if self.primitive_mode == 'z':
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
            if with_yaw:
                center = (corners[pair_index[0]] +
                          corners[pair_index[1]]) / 2.0
                center[2] = coords[:, 2].mean()
                point_sem[indices] = point_sem.new_tensor([
                    center[0], center[1],
                    center[2], (corners[4] - corners[0]).norm(),
                    (corners[3] - corners[0]).norm(), cls_label
                ])
            else:
                center = point_mask.new_tensor([
                    corners[:, 0].mean(), corners[:, 1].mean(),
                    coords[:, 2].mean()
                ])
                point_sem[indices] = point_sem.new_tensor([
                    center[0], center[1], center[2],
                    corners[:, 0].max() - corners[:, 0].min(),
                    corners[:, 1].max() - corners[:, 1].min(), cls_label
                ])
encore-zhou's avatar
encore-zhou committed
998
        elif self.primitive_mode == 'xy':
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
            if with_yaw:
                center = coords.mean(0)
                center[2] = (corners[pair_index[0], 2] +
                             corners[pair_index[1], 2]) / 2.0
                point_sem[indices] = point_sem.new_tensor([
                    center[0], center[1], center[2],
                    corners[pair_index[1], 2] - corners[pair_index[0], 2],
                    cls_label
                ])
            else:
                center = point_mask.new_tensor([
                    coords[:, 0].mean(), coords[:, 1].mean(),
                    corners[:, 2].mean()
                ])
                point_sem[indices] = point_sem.new_tensor([
                    center[0], center[1], center[2],
                    corners[:, 2].max() - corners[:, 2].min(), cls_label
                ])
encore-zhou's avatar
encore-zhou committed
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
        point_offset[indices] = center - coords
        return point_mask, point_offset, point_sem

    def _get_plane_fomulation(self, vector1, vector2, point):
        """Compute the equation of the plane.

        Args:
            vector1 (torch.Tensor): Parallel vector of the plane.
            vector2 (torch.Tensor): Parallel vector of the plane.
            point (torch.Tensor): Point on the plane.

        Returns:
            torch.Tensor: Equation of the plane.
        """
        surface_norm = torch.cross(vector1, vector2)
        surface_dis = -torch.dot(surface_norm, point)
        plane = point.new_tensor(
            [surface_norm[0], surface_norm[1], surface_norm[2], surface_dis])
        return plane