primitive_head.py 44.1 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
jshilong's avatar
jshilong committed
2
3
from typing import Dict, List, Optional

encore-zhou's avatar
encore-zhou committed
4
5
import torch
from mmcv.cnn import ConvModule
6
from mmcv.ops import furthest_point_sample
7
from mmcv.runner import BaseModule
jshilong's avatar
jshilong committed
8
from mmengine import InstanceData
encore-zhou's avatar
encore-zhou committed
9
10
11
from torch import nn as nn
from torch.nn import functional as F

jshilong's avatar
jshilong committed
12
from mmdet3d.core import Det3DDataSample
encore-zhou's avatar
encore-zhou committed
13
from mmdet3d.models.model_utils import VoteModule
14
from mmdet3d.ops import build_sa_module
15
from mmdet3d.registry import MODELS
encore-zhou's avatar
encore-zhou committed
16
17
18
from mmdet.core import multi_apply


19
@MODELS.register_module()
20
class PrimitiveHead(BaseModule):
encore-zhou's avatar
encore-zhou committed
21
22
23
24
25
26
    r"""Primitive head of `H3DNet <https://arxiv.org/abs/2006.05682>`_.

    Args:
        num_dims (int): The dimension of primitive semantic information.
        num_classes (int): The number of class.
        primitive_mode (str): The mode of primitive module,
27
            available mode ['z', 'xy', 'line'].
encore-zhou's avatar
encore-zhou committed
28
29
30
31
        bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and
            decoding boxes.
        train_cfg (dict): Config for training.
        test_cfg (dict): Config for testing.
32
        vote_module_cfg (dict): Config of VoteModule for point-wise votes.
encore-zhou's avatar
encore-zhou committed
33
34
35
36
        vote_aggregation_cfg (dict): Config of vote aggregation layer.
        feat_channels (tuple[int]): Convolution channels of
            prediction layer.
        upper_thresh (float): Threshold for line matching.
37
        surface_thresh (float): Threshold for surface matching.
encore-zhou's avatar
encore-zhou committed
38
39
40
41
42
43
44
45
        conv_cfg (dict): Config of convolution in prediction layer.
        norm_cfg (dict): Config of BN in prediction layer.
        objectness_loss (dict): Config of objectness loss.
        center_loss (dict): Config of center loss.
        semantic_loss (dict): Config of point-wise semantic segmentation loss.
    """

    def __init__(self,
jshilong's avatar
jshilong committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
                 num_dims: int,
                 num_classes: int,
                 primitive_mode: str,
                 train_cfg: dict = None,
                 test_cfg: dict = None,
                 vote_module_cfg: dict = None,
                 vote_aggregation_cfg: dict = None,
                 feat_channels: tuple = (128, 128),
                 upper_thresh: float = 100.0,
                 surface_thresh: float = 0.5,
                 conv_cfg: dict = dict(type='Conv1d'),
                 norm_cfg: dict = dict(type='BN1d'),
                 objectness_loss: dict = None,
                 center_loss: dict = None,
                 semantic_reg_loss: dict = None,
                 semantic_cls_loss: dict = None,
                 init_cfg: dict = None):
63
        super(PrimitiveHead, self).__init__(init_cfg=init_cfg)
jshilong's avatar
jshilong committed
64
        # bounding boxes centers,  face centers and edge centers
encore-zhou's avatar
encore-zhou committed
65
66
67
68
69
70
71
        assert primitive_mode in ['z', 'xy', 'line']
        # The dimension of primitive semantic information.
        self.num_dims = num_dims
        self.num_classes = num_classes
        self.primitive_mode = primitive_mode
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
72
        self.gt_per_seed = vote_module_cfg['gt_per_seed']
encore-zhou's avatar
encore-zhou committed
73
74
75
76
        self.num_proposal = vote_aggregation_cfg['num_point']
        self.upper_thresh = upper_thresh
        self.surface_thresh = surface_thresh

jshilong's avatar
jshilong committed
77
78
79
80
        self.loss_objectness = MODELS.build(objectness_loss)
        self.loss_center = MODELS.build(center_loss)
        self.loss_semantic_reg = MODELS.build(semantic_reg_loss)
        self.loss_semantic_cls = MODELS.build(semantic_cls_loss)
encore-zhou's avatar
encore-zhou committed
81

82
        assert vote_aggregation_cfg['mlp_channels'][0] == vote_module_cfg[
encore-zhou's avatar
encore-zhou committed
83
84
85
86
            'in_channels']

        # Primitive existence flag prediction
        self.flag_conv = ConvModule(
87
88
            vote_module_cfg['conv_channels'][-1],
            vote_module_cfg['conv_channels'][-1] // 2,
encore-zhou's avatar
encore-zhou committed
89
90
91
92
93
94
95
            1,
            padding=0,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            bias=True,
            inplace=True)
        self.flag_pred = torch.nn.Conv1d(
96
            vote_module_cfg['conv_channels'][-1] // 2, 2, 1)
encore-zhou's avatar
encore-zhou committed
97

98
        self.vote_module = VoteModule(**vote_module_cfg)
99
        self.vote_aggregation = build_sa_module(vote_aggregation_cfg)
encore-zhou's avatar
encore-zhou committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

        prev_channel = vote_aggregation_cfg['mlp_channels'][-1]
        conv_pred_list = list()
        for k in range(len(feat_channels)):
            conv_pred_list.append(
                ConvModule(
                    prev_channel,
                    feat_channels[k],
                    1,
                    padding=0,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    bias=True,
                    inplace=True))
            prev_channel = feat_channels[k]
        self.conv_pred = nn.Sequential(*conv_pred_list)

        conv_out_channel = 3 + num_dims + num_classes
        self.conv_pred.add_module('conv_out',
                                  nn.Conv1d(prev_channel, conv_out_channel, 1))

jshilong's avatar
jshilong committed
121
122
123
124
125
126
127
128
129
130
    @property
    def sample_mode(self):
        if self.training:
            sample_mode = self.train_cfg.sample_mode
        else:
            sample_mode = self.test_cfg.sample_mode
        assert sample_mode in ['vote', 'seed', 'random']
        return sample_mode

    def forward(self, feats_dict):
encore-zhou's avatar
encore-zhou committed
131
132
133
134
        """Forward pass.

        Args:
            feats_dict (dict): Feature dict from backbone.
jshilong's avatar
jshilong committed
135

encore-zhou's avatar
encore-zhou committed
136
137
138
139

        Returns:
            dict: Predictions of primitive head.
        """
jshilong's avatar
jshilong committed
140
        sample_mode = self.sample_mode
encore-zhou's avatar
encore-zhou committed
141
142
143
144
145
146
147
148
149
150
151

        seed_points = feats_dict['fp_xyz_net0'][-1]
        seed_features = feats_dict['hd_feature']
        results = {}

        primitive_flag = self.flag_conv(seed_features)
        primitive_flag = self.flag_pred(primitive_flag)

        results['pred_flag_' + self.primitive_mode] = primitive_flag

        # 1. generate vote_points from seed_points
152
153
        vote_points, vote_features, _ = self.vote_module(
            seed_points, seed_features)
encore-zhou's avatar
encore-zhou committed
154
155
156
157
        results['vote_' + self.primitive_mode] = vote_points
        results['vote_features_' + self.primitive_mode] = vote_features

        # 2. aggregate vote_points
jshilong's avatar
jshilong committed
158
        if sample_mode == 'vote':
encore-zhou's avatar
encore-zhou committed
159
160
            # use fps in vote_aggregation
            sample_indices = None
jshilong's avatar
jshilong committed
161
        elif sample_mode == 'seed':
encore-zhou's avatar
encore-zhou committed
162
163
164
            # FPS on seed and choose the votes corresponding to the seeds
            sample_indices = furthest_point_sample(seed_points,
                                                   self.num_proposal)
jshilong's avatar
jshilong committed
165
        elif sample_mode == 'random':
encore-zhou's avatar
encore-zhou committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
            # Random sampling from the votes
            batch_size, num_seed = seed_points.shape[:2]
            sample_indices = torch.randint(
                0,
                num_seed, (batch_size, self.num_proposal),
                dtype=torch.int32,
                device=seed_points.device)
        else:
            raise NotImplementedError('Unsupported sample mod!')

        vote_aggregation_ret = self.vote_aggregation(vote_points,
                                                     vote_features,
                                                     sample_indices)
        aggregated_points, features, aggregated_indices = vote_aggregation_ret
        results['aggregated_points_' + self.primitive_mode] = aggregated_points
        results['aggregated_features_' + self.primitive_mode] = features
        results['aggregated_indices_' +
                self.primitive_mode] = aggregated_indices

        # 3. predict primitive offsets and semantic information
        predictions = self.conv_pred(features)

        # 4. decode predictions
        decode_ret = self.primitive_decode_scores(predictions,
                                                  aggregated_points)
        results.update(decode_ret)

        center, pred_ind = self.get_primitive_center(
            primitive_flag, decode_ret['center_' + self.primitive_mode])

        results['pred_' + self.primitive_mode + '_ind'] = pred_ind
        results['pred_' + self.primitive_mode + '_center'] = center
        return results

jshilong's avatar
jshilong committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    def loss(self, points: List[torch.Tensor], feats_dict: Dict[str,
                                                                torch.Tensor],
             batch_data_samples: List[Det3DDataSample], **kwargs) -> dict:
        """
        Args:
            points (list[tensor]): Points cloud of multiple samples.
            feats_dict (dict): Predictions from backbone or FPN.
            batch_data_samples (list[:obj:`Det3DDataSample`]): Each item
                contains the meta information of each sample and
                corresponding annotations.

        Returns:
            dict:  A dictionary of loss components.
        """
        preds = self(feats_dict)
        feats_dict.update(preds)

        batch_gt_instance_3d = []
        batch_gt_instances_ignore = []
        batch_input_metas = []
        batch_pts_semantic_mask = []
        batch_pts_instance_mask = []
        for data_sample in batch_data_samples:
            batch_input_metas.append(data_sample.metainfo)
            batch_gt_instance_3d.append(data_sample.gt_instances_3d)
            batch_gt_instances_ignore.append(
                data_sample.get('ignored_instances', None))
            batch_pts_semantic_mask.append(
                data_sample.gt_pts_seg.get('pts_semantic_mask', None))
            batch_pts_instance_mask.append(
                data_sample.gt_pts_seg.get('pts_instance_mask', None))

        loss_inputs = (points, feats_dict, batch_gt_instance_3d)
        losses = self.loss_by_feat(
            *loss_inputs,
            batch_pts_semantic_mask=batch_pts_semantic_mask,
            batch_pts_instance_mask=batch_pts_instance_mask,
            batch_gt_instances_ignore=batch_gt_instances_ignore,
        )
        return losses

    def loss_by_feat(
            self,
            points: List[torch.Tensor],
            feats_dict: dict,
            batch_gt_instances_3d: List[InstanceData],
            batch_pts_semantic_mask: Optional[List[torch.Tensor]] = None,
            batch_pts_instance_mask: Optional[List[torch.Tensor]] = None,
            **kwargs):
encore-zhou's avatar
encore-zhou committed
249
250
251
252
        """Compute loss.

        Args:
            points (list[torch.Tensor]): Input points.
jshilong's avatar
jshilong committed
253
254
255
256
257
258
259
260
261
262
            feats_dict (dict): Predictions of previous modules.
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instances. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_pts_semantic_mask (list[tensor]): Semantic mask
                of points cloud. Defaults to None.
            batch_pts_semantic_mask (list[tensor]): Instance mask
                of points cloud. Defaults to None.
            batch_input_metas (list[dict]): Contain pcd and img's meta info.
            ret_target (bool): Return targets or not. Defaults to False.
encore-zhou's avatar
encore-zhou committed
263
264
265
266

        Returns:
            dict: Losses of Primitive Head.
        """
jshilong's avatar
jshilong committed
267
268
269
270

        targets = self.get_targets(points, feats_dict, batch_gt_instances_3d,
                                   batch_pts_semantic_mask,
                                   batch_pts_instance_mask)
encore-zhou's avatar
encore-zhou committed
271
272
273
274
275
276

        (point_mask, point_offset, gt_primitive_center, gt_primitive_semantic,
         gt_sem_cls_label, gt_primitive_mask) = targets

        losses = {}
        # Compute the loss of primitive existence flag
jshilong's avatar
jshilong committed
277
278
        pred_flag = feats_dict['pred_flag_' + self.primitive_mode]
        flag_loss = self.loss_objectness(pred_flag, gt_primitive_mask.long())
encore-zhou's avatar
encore-zhou committed
279
280
281
282
        losses['flag_loss_' + self.primitive_mode] = flag_loss

        # calculate vote loss
        vote_loss = self.vote_module.get_loss(
jshilong's avatar
jshilong committed
283
284
285
            feats_dict['seed_points'],
            feats_dict['vote_' + self.primitive_mode],
            feats_dict['seed_indices'], point_mask, point_offset)
encore-zhou's avatar
encore-zhou committed
286
287
        losses['vote_loss_' + self.primitive_mode] = vote_loss

jshilong's avatar
jshilong committed
288
        num_proposal = feats_dict['aggregated_points_' +
encore-zhou's avatar
encore-zhou committed
289
                                  self.primitive_mode].shape[1]
jshilong's avatar
jshilong committed
290
        primitive_center = feats_dict['center_' + self.primitive_mode]
encore-zhou's avatar
encore-zhou committed
291
        if self.primitive_mode != 'line':
jshilong's avatar
jshilong committed
292
            primitive_semantic = feats_dict['size_residuals_' +
encore-zhou's avatar
encore-zhou committed
293
294
295
                                            self.primitive_mode].contiguous()
        else:
            primitive_semantic = None
jshilong's avatar
jshilong committed
296
        semancitc_scores = feats_dict['sem_cls_scores_' +
encore-zhou's avatar
encore-zhou committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
                                      self.primitive_mode].transpose(2, 1)

        gt_primitive_mask = gt_primitive_mask / \
            (gt_primitive_mask.sum() + 1e-6)
        center_loss, size_loss, sem_cls_loss = self.compute_primitive_loss(
            primitive_center, primitive_semantic, semancitc_scores,
            num_proposal, gt_primitive_center, gt_primitive_semantic,
            gt_sem_cls_label, gt_primitive_mask)
        losses['center_loss_' + self.primitive_mode] = center_loss
        losses['size_loss_' + self.primitive_mode] = size_loss
        losses['sem_loss_' + self.primitive_mode] = sem_cls_loss

        return losses

jshilong's avatar
jshilong committed
311
312
313
314
315
316
317
318
    def get_targets(
        self,
        points,
        bbox_preds: Optional[dict] = None,
        batch_gt_instances_3d: List[InstanceData] = None,
        batch_pts_semantic_mask: List[torch.Tensor] = None,
        batch_pts_instance_mask: List[torch.Tensor] = None,
    ):
encore-zhou's avatar
encore-zhou committed
319
320
321
322
        """Generate targets of primitive head.

        Args:
            points (list[torch.Tensor]): Points of each batch.
jshilong's avatar
jshilong committed
323
324
325
326
327
328
329
330
331
            bbox_preds (torch.Tensor): Bounding box predictions of
                primitive head.
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instances. It usually includes ``bboxes_3d`` and
                ``labels_3d`` attributes.
            batch_pts_semantic_mask (list[tensor]): Semantic gt mask for
                multiple images.
            batch_pts_instance_mask (list[tensor]): Instance gt mask for
                multiple images.
encore-zhou's avatar
encore-zhou committed
332
333
334
335

        Returns:
            tuple[torch.Tensor]: Targets of primitive head.
        """
jshilong's avatar
jshilong committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
        batch_gt_labels_3d = [
            gt_instances_3d.labels_3d
            for gt_instances_3d in batch_gt_instances_3d
        ]
        batch_gt_bboxes_3d = [
            gt_instances_3d.bboxes_3d
            for gt_instances_3d in batch_gt_instances_3d
        ]
        for index in range(len(batch_gt_labels_3d)):
            if len(batch_gt_labels_3d[index]) == 0:
                fake_box = batch_gt_bboxes_3d[index].tensor.new_zeros(
                    1, batch_gt_bboxes_3d[index].tensor.shape[-1])
                batch_gt_bboxes_3d[index] = batch_gt_bboxes_3d[index].new_box(
                    fake_box)
                batch_gt_labels_3d[index] = batch_gt_labels_3d[
                    index].new_zeros(1)

        if batch_pts_semantic_mask is None:
            batch_pts_semantic_mask = [
                None for _ in range(len(batch_gt_labels_3d))
            ]
            batch_pts_instance_mask = [
                None for _ in range(len(batch_gt_labels_3d))
            ]
encore-zhou's avatar
encore-zhou committed
360
361
362

        (point_mask, point_sem,
         point_offset) = multi_apply(self.get_targets_single, points,
jshilong's avatar
jshilong committed
363
364
365
                                     batch_gt_bboxes_3d, batch_gt_labels_3d,
                                     batch_pts_semantic_mask,
                                     batch_pts_instance_mask)
encore-zhou's avatar
encore-zhou committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

        point_mask = torch.stack(point_mask)
        point_sem = torch.stack(point_sem)
        point_offset = torch.stack(point_offset)

        batch_size = point_mask.shape[0]
        num_proposal = bbox_preds['aggregated_points_' +
                                  self.primitive_mode].shape[1]
        num_seed = bbox_preds['seed_points'].shape[1]
        seed_inds = bbox_preds['seed_indices'].long()
        seed_inds_expand = seed_inds.view(batch_size, num_seed,
                                          1).repeat(1, 1, 3)
        seed_gt_votes = torch.gather(point_offset, 1, seed_inds_expand)
        seed_gt_votes += bbox_preds['seed_points']
        gt_primitive_center = seed_gt_votes.view(batch_size * num_proposal, 1,
                                                 3)

        seed_inds_expand_sem = seed_inds.view(batch_size, num_seed, 1).repeat(
            1, 1, 4 + self.num_dims)
        seed_gt_sem = torch.gather(point_sem, 1, seed_inds_expand_sem)
        gt_primitive_semantic = seed_gt_sem[:, :, 3:3 + self.num_dims].view(
            batch_size * num_proposal, 1, self.num_dims).contiguous()

        gt_sem_cls_label = seed_gt_sem[:, :, -1].long()

        gt_votes_mask = torch.gather(point_mask, 1, seed_inds)

        return (point_mask, point_offset, gt_primitive_center,
                gt_primitive_semantic, gt_sem_cls_label, gt_votes_mask)

    def get_targets_single(self,
                           points,
                           gt_bboxes_3d,
                           gt_labels_3d,
                           pts_semantic_mask=None,
                           pts_instance_mask=None):
        """Generate targets of primitive head for single batch.

        Args:
            points (torch.Tensor): Points of each batch.
406
            gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth
encore-zhou's avatar
encore-zhou committed
407
408
                boxes of each batch.
            gt_labels_3d (torch.Tensor): Labels of each batch.
409
            pts_semantic_mask (torch.Tensor): Point-wise semantic
encore-zhou's avatar
encore-zhou committed
410
                label of each batch.
411
            pts_instance_mask (torch.Tensor): Point-wise instance
encore-zhou's avatar
encore-zhou committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
                label of each batch.

        Returns:
            tuple[torch.Tensor]: Targets of primitive head.
        """
        gt_bboxes_3d = gt_bboxes_3d.to(points.device)
        num_points = points.shape[0]

        point_mask = points.new_zeros(num_points)
        # Offset to the primitive center
        point_offset = points.new_zeros([num_points, 3])
        # Semantic information of primitive center
        point_sem = points.new_zeros([num_points, 3 + self.num_dims + 1])

426
427
        # Generate pts_semantic_mask and pts_instance_mask when they are None
        if pts_semantic_mask is None or pts_instance_mask is None:
428
            points2box_mask = gt_bboxes_3d.points_in_boxes_all(points)
429
430
431
432
433
434
435
436
437
438
439
            assignment = points2box_mask.argmax(1)
            background_mask = points2box_mask.max(1)[0] == 0

            if pts_semantic_mask is None:
                pts_semantic_mask = gt_labels_3d[assignment]
                pts_semantic_mask[background_mask] = self.num_classes

            if pts_instance_mask is None:
                pts_instance_mask = assignment
                pts_instance_mask[background_mask] = gt_labels_3d.shape[0]

encore-zhou's avatar
encore-zhou committed
440
        instance_flag = torch.nonzero(
Wenhao Wu's avatar
Wenhao Wu committed
441
            pts_semantic_mask != self.num_classes, as_tuple=False).squeeze(1)
encore-zhou's avatar
encore-zhou committed
442
443
        instance_labels = pts_instance_mask[instance_flag].unique()

444
        with_yaw = gt_bboxes_3d.with_yaw
encore-zhou's avatar
encore-zhou committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
        for i, i_instance in enumerate(instance_labels):
            indices = instance_flag[pts_instance_mask[instance_flag] ==
                                    i_instance]
            coords = points[indices, :3]
            cur_cls_label = pts_semantic_mask[indices][0]

            # Bbox Corners
            cur_corners = gt_bboxes_3d.corners[i]

            plane_lower_temp = points.new_tensor(
                [0, 0, 1, -cur_corners[7, -1]])
            upper_points = cur_corners[[1, 2, 5, 6]]
            refined_distance = (upper_points * plane_lower_temp[:3]).sum(dim=1)

            if self.check_horizon(upper_points) and \
                    plane_lower_temp[0] + plane_lower_temp[1] < \
                    self.train_cfg['lower_thresh']:
                plane_lower = points.new_tensor(
                    [0, 0, 1, plane_lower_temp[-1]])
                plane_upper = points.new_tensor(
                    [0, 0, 1, -torch.mean(refined_distance)])
            else:
                raise NotImplementedError('Only horizontal plane is support!')

            if self.check_dist(plane_upper, upper_points) is False:
                raise NotImplementedError(
                    'Mean distance to plane should be lower than thresh!')

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_lower, coords)

477
            # Get bottom four lines
encore-zhou's avatar
encore-zhou committed
478
479
            if self.primitive_mode == 'line':
                point2line_matching = self.match_point2line(
480
                    coords[selected], cur_corners, with_yaw, mode='bottom')
encore-zhou's avatar
encore-zhou committed
481
482
483
484
485
486
487
488
489
490

                point_mask, point_offset, point_sem = \
                    self._assign_primitive_line_targets(point_mask,
                                                        point_offset,
                                                        point_sem,
                                                        coords[selected],
                                                        indices[selected],
                                                        cur_cls_label,
                                                        point2line_matching,
                                                        cur_corners,
491
492
493
                                                        [1, 1, 0, 0],
                                                        with_yaw,
                                                        mode='bottom')
encore-zhou's avatar
encore-zhou committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507

            # Set the surface labels here
            if self.primitive_mode == 'z' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    point2plane_dist[selected].var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
                    self._assign_primitive_surface_targets(point_mask,
                                                           point_offset,
                                                           point_sem,
                                                           coords[selected],
                                                           indices[selected],
                                                           cur_cls_label,
508
509
510
                                                           cur_corners,
                                                           with_yaw,
                                                           mode='bottom')
encore-zhou's avatar
encore-zhou committed
511
512
513
514
515

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_upper, coords)

516
            # Get top four lines
encore-zhou's avatar
encore-zhou committed
517
518
            if self.primitive_mode == 'line':
                point2line_matching = self.match_point2line(
519
                    coords[selected], cur_corners, with_yaw, mode='top')
encore-zhou's avatar
encore-zhou committed
520
521
522
523
524
525
526
527
528
529

                point_mask, point_offset, point_sem = \
                    self._assign_primitive_line_targets(point_mask,
                                                        point_offset,
                                                        point_sem,
                                                        coords[selected],
                                                        indices[selected],
                                                        cur_cls_label,
                                                        point2line_matching,
                                                        cur_corners,
530
531
532
                                                        [1, 1, 0, 0],
                                                        with_yaw,
                                                        mode='top')
encore-zhou's avatar
encore-zhou committed
533
534
535
536
537
538
539
540
541
542
543
544
545

            if self.primitive_mode == 'z' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    point2plane_dist[selected].var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
                    self._assign_primitive_surface_targets(point_mask,
                                                           point_offset,
                                                           point_sem,
                                                           coords[selected],
                                                           indices[selected],
                                                           cur_cls_label,
546
547
548
                                                           cur_corners,
                                                           with_yaw,
                                                           mode='top')
encore-zhou's avatar
encore-zhou committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

            # Get left two lines
            plane_left_temp = self._get_plane_fomulation(
                cur_corners[2] - cur_corners[3],
                cur_corners[3] - cur_corners[0], cur_corners[0])

            right_points = cur_corners[[4, 5, 7, 6]]
            plane_left_temp /= torch.norm(plane_left_temp[:3])
            refined_distance = (right_points * plane_left_temp[:3]).sum(dim=1)

            if plane_left_temp[2] < self.train_cfg['lower_thresh']:
                plane_left = plane_left_temp
                plane_right = points.new_tensor([
                    plane_left_temp[0], plane_left_temp[1], plane_left_temp[2],
                    -refined_distance.mean()
                ])
            else:
                raise NotImplementedError(
                    'Normal vector of the plane should be horizontal!')

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_left, coords)

573
            # Get left four lines
encore-zhou's avatar
encore-zhou committed
574
            if self.primitive_mode == 'line':
575
576
                point2line_matching = self.match_point2line(
                    coords[selected], cur_corners, with_yaw, mode='left')
encore-zhou's avatar
encore-zhou committed
577
                point_mask, point_offset, point_sem = \
578
579
580
581
582
                    self._assign_primitive_line_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        point2line_matching[2:], cur_corners, [2, 2],
                        with_yaw, mode='left')
encore-zhou's avatar
encore-zhou committed
583
584
585
586
587
588
589

            if self.primitive_mode == 'xy' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    point2plane_dist[selected].var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
590
591
592
593
                    self._assign_primitive_surface_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        cur_corners, with_yaw, mode='left')
encore-zhou's avatar
encore-zhou committed
594
595
596
597
598

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_right, coords)

599
            # Get right four lines
encore-zhou's avatar
encore-zhou committed
600
            if self.primitive_mode == 'line':
601
602
                point2line_matching = self.match_point2line(
                    coords[selected], cur_corners, with_yaw, mode='right')
encore-zhou's avatar
encore-zhou committed
603
604

                point_mask, point_offset, point_sem = \
605
606
607
608
609
                    self._assign_primitive_line_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        point2line_matching[2:], cur_corners, [2, 2],
                        with_yaw, mode='right')
encore-zhou's avatar
encore-zhou committed
610
611
612
613
614
615
616

            if self.primitive_mode == 'xy' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    point2plane_dist[selected].var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
617
618
619
620
                    self._assign_primitive_surface_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        cur_corners, with_yaw, mode='right')
encore-zhou's avatar
encore-zhou committed
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

            plane_front_temp = self._get_plane_fomulation(
                cur_corners[0] - cur_corners[4],
                cur_corners[4] - cur_corners[5], cur_corners[5])

            back_points = cur_corners[[3, 2, 7, 6]]
            plane_front_temp /= torch.norm(plane_front_temp[:3])
            refined_distance = (back_points * plane_front_temp[:3]).sum(dim=1)

            if plane_front_temp[2] < self.train_cfg['lower_thresh']:
                plane_front = plane_front_temp
                plane_back = points.new_tensor([
                    plane_front_temp[0], plane_front_temp[1],
                    plane_front_temp[2], -torch.mean(refined_distance)
                ])
            else:
                raise NotImplementedError(
                    'Normal vector of the plane should be horizontal!')

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_front, coords)

            if self.primitive_mode == 'xy' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    (point2plane_dist[selected]).var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
650
651
652
653
                    self._assign_primitive_surface_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        cur_corners, with_yaw, mode='front')
encore-zhou's avatar
encore-zhou committed
654
655
656
657
658
659
660
661
662
663
664

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_back, coords)

            if self.primitive_mode == 'xy' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    point2plane_dist[selected].var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
665
666
667
668
                    self._assign_primitive_surface_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        cur_corners, with_yaw, mode='back')
encore-zhou's avatar
encore-zhou committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725

        return (point_mask, point_sem, point_offset)

    def primitive_decode_scores(self, predictions, aggregated_points):
        """Decode predicted parts to primitive head.

        Args:
            predictions (torch.Tensor): primitive pridictions of each batch.
            aggregated_points (torch.Tensor): The aggregated points
                of vote stage.

        Returns:
            Dict: Predictions of primitive head, including center,
                semantic size and semantic scores.
        """

        ret_dict = {}
        pred_transposed = predictions.transpose(2, 1)

        center = aggregated_points + pred_transposed[:, :, 0:3]
        ret_dict['center_' + self.primitive_mode] = center

        if self.primitive_mode in ['z', 'xy']:
            ret_dict['size_residuals_' + self.primitive_mode] = \
                pred_transposed[:, :, 3:3 + self.num_dims]

        ret_dict['sem_cls_scores_' + self.primitive_mode] = \
            pred_transposed[:, :, 3 + self.num_dims:]

        return ret_dict

    def check_horizon(self, points):
        """Check whether is a horizontal plane.

        Args:
            points (torch.Tensor): Points of input.

        Returns:
            Bool: Flag of result.
        """
        return (points[0][-1] == points[1][-1]) and \
               (points[1][-1] == points[2][-1]) and \
               (points[2][-1] == points[3][-1])

    def check_dist(self, plane_equ, points):
        """Whether the mean of points to plane distance is lower than thresh.

        Args:
            plane_equ (torch.Tensor): Plane to be checked.
            points (torch.Tensor): Points to be checked.

        Returns:
            Tuple: Flag of result.
        """
        return (points[:, 2] +
                plane_equ[-1]).sum() / 4.0 < self.train_cfg['lower_thresh']

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
    def point2line_dist(self, points, pts_a, pts_b):
        """Calculate the distance from point to line.

        Args:
            points (torch.Tensor): Points of input.
            pts_a (torch.Tensor): Point on the specific line.
            pts_b (torch.Tensor): Point on the specific line.

        Returns:
            torch.Tensor: Distance between each point to line.
        """
        line_a2b = pts_b - pts_a
        line_a2pts = points - pts_a
        length = (line_a2pts * line_a2b.view(1, 3)).sum(1) / \
            line_a2b.norm()
        dist = (line_a2pts.norm(dim=1)**2 - length**2).sqrt()

        return dist

    def match_point2line(self, points, corners, with_yaw, mode='bottom'):
encore-zhou's avatar
encore-zhou committed
746
747
748
749
        """Match points to corresponding line.

        Args:
            points (torch.Tensor): Points of input.
750
751
752
753
754
            corners (torch.Tensor): Eight corners of a bounding box.
            with_yaw (Bool): Whether the boundind box is with rotation.
            mode (str, optional): Specify which line should be matched,
                available mode are ('bottom', 'top', 'left', 'right').
                Defaults to 'bottom'.
encore-zhou's avatar
encore-zhou committed
755
756
757
758

        Returns:
            Tuple: Flag of matching correspondence.
        """
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
        if with_yaw:
            corners_pair = {
                'bottom': [[0, 3], [4, 7], [0, 4], [3, 7]],
                'top': [[1, 2], [5, 6], [1, 5], [2, 6]],
                'left': [[0, 1], [3, 2], [0, 1], [3, 2]],
                'right': [[4, 5], [7, 6], [4, 5], [7, 6]]
            }
            selected_list = []
            for pair_index in corners_pair[mode]:
                selected = self.point2line_dist(
                    points, corners[pair_index[0]], corners[pair_index[1]]) \
                    < self.train_cfg['line_thresh']
                selected_list.append(selected)
        else:
            xmin, ymin, _ = corners.min(0)[0]
            xmax, ymax, _ = corners.max(0)[0]
            sel1 = torch.abs(points[:, 0] -
                             xmin) < self.train_cfg['line_thresh']
            sel2 = torch.abs(points[:, 0] -
                             xmax) < self.train_cfg['line_thresh']
            sel3 = torch.abs(points[:, 1] -
                             ymin) < self.train_cfg['line_thresh']
            sel4 = torch.abs(points[:, 1] -
                             ymax) < self.train_cfg['line_thresh']
            selected_list = [sel1, sel2, sel3, sel4]
        return selected_list
encore-zhou's avatar
encore-zhou committed
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

    def match_point2plane(self, plane, points):
        """Match points to plane.

        Args:
            plane (torch.Tensor): Equation of the plane.
            points (torch.Tensor): Points of input.

        Returns:
            Tuple: Distance of each point to the plane and
                flag of matching correspondence.
        """
        point2plane_dist = torch.abs((points * plane[:3]).sum(dim=1) +
                                     plane[-1])
        min_dist = point2plane_dist.min()
        selected = torch.abs(point2plane_dist -
                             min_dist) < self.train_cfg['dist_thresh']
        return point2plane_dist, selected

    def compute_primitive_loss(self, primitive_center, primitive_semantic,
                               semantic_scores, num_proposal,
                               gt_primitive_center, gt_primitive_semantic,
                               gt_sem_cls_label, gt_primitive_mask):
        """Compute loss of primitive module.

        Args:
            primitive_center (torch.Tensor): Pridictions of primitive center.
            primitive_semantic (torch.Tensor): Pridictions of primitive
                semantic.
            semantic_scores (torch.Tensor): Pridictions of primitive
                semantic scores.
            num_proposal (int): The number of primitive proposal.
            gt_primitive_center (torch.Tensor): Ground truth of
                primitive center.
            gt_votes_sem (torch.Tensor): Ground truth of primitive semantic.
            gt_sem_cls_label (torch.Tensor): Ground truth of primitive
                semantic class.
            gt_primitive_mask (torch.Tensor): Ground truth of primitive mask.

        Returns:
            Tuple: Loss of primitive module.
        """
        batch_size = primitive_center.shape[0]
        vote_xyz_reshape = primitive_center.view(batch_size * num_proposal, -1,
                                                 3)

jshilong's avatar
jshilong committed
831
        center_loss = self.loss_center(
encore-zhou's avatar
encore-zhou committed
832
833
834
835
836
837
838
            vote_xyz_reshape,
            gt_primitive_center,
            dst_weight=gt_primitive_mask.view(batch_size * num_proposal, 1))[1]

        if self.primitive_mode != 'line':
            size_xyz_reshape = primitive_semantic.view(
                batch_size * num_proposal, -1, self.num_dims).contiguous()
jshilong's avatar
jshilong committed
839
            size_loss = self.loss_semantic_reg(
encore-zhou's avatar
encore-zhou committed
840
841
842
843
844
845
846
847
                size_xyz_reshape,
                gt_primitive_semantic,
                dst_weight=gt_primitive_mask.view(batch_size * num_proposal,
                                                  1))[1]
        else:
            size_loss = center_loss.new_tensor(0.0)

        # Semantic cls loss
jshilong's avatar
jshilong committed
848
        sem_cls_loss = self.loss_semantic_cls(
encore-zhou's avatar
encore-zhou committed
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
            semantic_scores, gt_sem_cls_label, weight=gt_primitive_mask)

        return center_loss, size_loss, sem_cls_loss

    def get_primitive_center(self, pred_flag, center):
        """Generate primitive center from predictions.

        Args:
            pred_flag (torch.Tensor): Scores of primitive center.
            center (torch.Tensor): Pridictions of primitive center.

        Returns:
            Tuple: Primitive center and the prediction indices.
        """
        ind_normal = F.softmax(pred_flag, dim=1)
        pred_indices = (ind_normal[:, 1, :] >
                        self.surface_thresh).detach().float()
        selected = (ind_normal[:, 1, :] <=
                    self.surface_thresh).detach().float()
        offset = torch.ones_like(center) * self.upper_thresh
        center = center + offset * selected.unsqueeze(-1)
        return center, pred_indices

872
873
874
875
876
877
878
879
880
881
882
883
    def _assign_primitive_line_targets(self,
                                       point_mask,
                                       point_offset,
                                       point_sem,
                                       coords,
                                       indices,
                                       cls_label,
                                       point2line_matching,
                                       corners,
                                       center_axises,
                                       with_yaw,
                                       mode='bottom'):
encore-zhou's avatar
encore-zhou committed
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
        """Generate targets of line primitive.

        Args:
            point_mask (torch.Tensor): Tensor to store the ground
                truth of mask.
            point_offset (torch.Tensor): Tensor to store the ground
                truth of offset.
            point_sem (torch.Tensor): Tensor to store the ground
                truth of semantic.
            coords (torch.Tensor): The selected points.
            indices (torch.Tensor): Indices of the selected points.
            cls_label (int): Class label of the ground truth bounding box.
            point2line_matching (torch.Tensor): Flag indicate that
                matching line of each point.
            corners (torch.Tensor): Corners of the ground truth bounding box.
            center_axises (list[int]): Indicate in which axis the line center
                should be refined.
901
902
903
904
            with_yaw (Bool): Whether the boundind box is with rotation.
            mode (str, optional): Specify which line should be matched,
                available mode are ('bottom', 'top', 'left', 'right').
                Defaults to 'bottom'.
encore-zhou's avatar
encore-zhou committed
905
906
907
908

        Returns:
            Tuple: Targets of the line primitive.
        """
909
910
911
912
913
914
915
916
917
918
919
        corners_pair = {
            'bottom': [[0, 3], [4, 7], [0, 4], [3, 7]],
            'top': [[1, 2], [5, 6], [1, 5], [2, 6]],
            'left': [[0, 1], [3, 2]],
            'right': [[4, 5], [7, 6]]
        }
        corners_pair = corners_pair[mode]
        assert len(corners_pair) == len(point2line_matching) == len(
            center_axises)
        for line_select, center_axis, pair_index in zip(
                point2line_matching, center_axises, corners_pair):
encore-zhou's avatar
encore-zhou committed
920
921
            if line_select.sum() > self.train_cfg['num_point_line']:
                point_mask[indices[line_select]] = 1.0
922
923
924
925
926
927
928
929

                if with_yaw:
                    line_center = (corners[pair_index[0]] +
                                   corners[pair_index[1]]) / 2
                else:
                    line_center = coords[line_select].mean(dim=0)
                    line_center[center_axis] = corners[:, center_axis].mean()

encore-zhou's avatar
encore-zhou committed
930
931
932
933
934
935
936
                point_offset[indices[line_select]] = \
                    line_center - coords[line_select]
                point_sem[indices[line_select]] = \
                    point_sem.new_tensor([line_center[0], line_center[1],
                                          line_center[2], cls_label])
        return point_mask, point_offset, point_sem

937
938
939
940
941
942
943
944
945
946
    def _assign_primitive_surface_targets(self,
                                          point_mask,
                                          point_offset,
                                          point_sem,
                                          coords,
                                          indices,
                                          cls_label,
                                          corners,
                                          with_yaw,
                                          mode='bottom'):
encore-zhou's avatar
encore-zhou committed
947
948
949
950
951
952
953
954
955
956
957
958
959
        """Generate targets for primitive z and primitive xy.

        Args:
            point_mask (torch.Tensor): Tensor to store the ground
                truth of mask.
            point_offset (torch.Tensor): Tensor to store the ground
                truth of offset.
            point_sem (torch.Tensor): Tensor to store the ground
                truth of semantic.
            coords (torch.Tensor): The selected points.
            indices (torch.Tensor): Indices of the selected points.
            cls_label (int): Class label of the ground truth bounding box.
            corners (torch.Tensor): Corners of the ground truth bounding box.
960
961
962
963
964
            with_yaw (Bool): Whether the boundind box is with rotation.
            mode (str, optional): Specify which line should be matched,
                available mode are ('bottom', 'top', 'left', 'right',
                'front', 'back').
                Defaults to 'bottom'.
encore-zhou's avatar
encore-zhou committed
965
966
967
968
969

        Returns:
            Tuple: Targets of the center primitive.
        """
        point_mask[indices] = 1.0
970
971
972
973
974
975
976
977
978
        corners_pair = {
            'bottom': [0, 7],
            'top': [1, 6],
            'left': [0, 1],
            'right': [4, 5],
            'front': [0, 1],
            'back': [3, 2]
        }
        pair_index = corners_pair[mode]
encore-zhou's avatar
encore-zhou committed
979
        if self.primitive_mode == 'z':
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
            if with_yaw:
                center = (corners[pair_index[0]] +
                          corners[pair_index[1]]) / 2.0
                center[2] = coords[:, 2].mean()
                point_sem[indices] = point_sem.new_tensor([
                    center[0], center[1],
                    center[2], (corners[4] - corners[0]).norm(),
                    (corners[3] - corners[0]).norm(), cls_label
                ])
            else:
                center = point_mask.new_tensor([
                    corners[:, 0].mean(), corners[:, 1].mean(),
                    coords[:, 2].mean()
                ])
                point_sem[indices] = point_sem.new_tensor([
                    center[0], center[1], center[2],
                    corners[:, 0].max() - corners[:, 0].min(),
                    corners[:, 1].max() - corners[:, 1].min(), cls_label
                ])
encore-zhou's avatar
encore-zhou committed
999
        elif self.primitive_mode == 'xy':
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
            if with_yaw:
                center = coords.mean(0)
                center[2] = (corners[pair_index[0], 2] +
                             corners[pair_index[1], 2]) / 2.0
                point_sem[indices] = point_sem.new_tensor([
                    center[0], center[1], center[2],
                    corners[pair_index[1], 2] - corners[pair_index[0], 2],
                    cls_label
                ])
            else:
                center = point_mask.new_tensor([
                    coords[:, 0].mean(), coords[:, 1].mean(),
                    corners[:, 2].mean()
                ])
                point_sem[indices] = point_sem.new_tensor([
                    center[0], center[1], center[2],
                    corners[:, 2].max() - corners[:, 2].min(), cls_label
                ])
encore-zhou's avatar
encore-zhou committed
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
        point_offset[indices] = center - coords
        return point_mask, point_offset, point_sem

    def _get_plane_fomulation(self, vector1, vector2, point):
        """Compute the equation of the plane.

        Args:
            vector1 (torch.Tensor): Parallel vector of the plane.
            vector2 (torch.Tensor): Parallel vector of the plane.
            point (torch.Tensor): Point on the plane.

        Returns:
            torch.Tensor: Equation of the plane.
        """
        surface_norm = torch.cross(vector1, vector2)
        surface_dis = -torch.dot(surface_norm, point)
        plane = point.new_tensor(
            [surface_norm[0], surface_norm[1], surface_norm[2], surface_dis])
        return plane