model_utils.py 5.25 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
5
6
7
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import random
from os.path import dirname, exists, join

import numpy as np
import torch
8
from mmengine.structures import InstanceData
jshilong's avatar
jshilong committed
9

zhangshilong's avatar
zhangshilong committed
10
11
12
from mmdet3d.structures import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                                Det3DDataSample, LiDARInstance3DBoxes,
                                PointData)
jshilong's avatar
jshilong committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39


def _setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True


def _get_config_directory():
    """Find the predefined detector config directory."""
    try:
        # Assume we are running in the source mmdetection3d repo
        repo_dpath = dirname(dirname(dirname(__file__)))
    except NameError:
        # For IPython development when this __file__ is not defined
        import mmdet3d
        repo_dpath = dirname(dirname(mmdet3d.__file__))
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def _get_config_module(fname):
    """Load a configuration as a python module."""
40
    from mmengine import Config
jshilong's avatar
jshilong committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    config_dpath = _get_config_directory()
    config_fpath = join(config_dpath, fname)
    config_mod = Config.fromfile(config_fpath)
    return config_mod


def _get_model_cfg(fname):
    """Grab configs necessary to create a model.

    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
    """
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)

    return model


def _get_detector_cfg(fname):
    """Grab configs necessary to create a detector.

    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
    """
65
    import mmengine
jshilong's avatar
jshilong committed
66
67
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
68
69
    train_cfg = mmengine.Config(copy.deepcopy(config.model.train_cfg))
    test_cfg = mmengine.Config(copy.deepcopy(config.model.test_cfg))
jshilong's avatar
jshilong committed
70
71
72
73
74
75

    model.update(train_cfg=train_cfg)
    model.update(test_cfg=test_cfg)
    return model


jshilong's avatar
jshilong committed
76
77
78
def _create_detector_inputs(seed=0,
                            with_points=True,
                            with_img=False,
zhangshilong's avatar
zhangshilong committed
79
                            img_size=10,
jshilong's avatar
jshilong committed
80
81
82
83
84
85
86
87
                            num_gt_instance=20,
                            num_points=10,
                            points_feat_dim=4,
                            num_classes=3,
                            gt_bboxes_dim=7,
                            with_pts_semantic_mask=False,
                            with_pts_instance_mask=False,
                            bboxes_3d_type='lidar'):
jshilong's avatar
jshilong committed
88
    _setup_seed(seed)
jshilong's avatar
jshilong committed
89
90
91
92
93
94
    assert bboxes_3d_type in ('lidar', 'depth', 'cam')
    bbox_3d_class = {
        'lidar': LiDARInstance3DBoxes,
        'depth': DepthInstance3DBoxes,
        'cam': CameraInstance3DBoxes
    }
zhangshilong's avatar
zhangshilong committed
95
96
97
98
99
100
101
102
103
    meta_info = dict()
    meta_info['depth2img'] = np.array(
        [[5.23289349e+02, 3.68831943e+02, 6.10469439e+01],
         [1.09560138e+02, 1.97404735e+02, -5.47377738e+02],
         [1.25930002e-02, 9.92229998e-01, -1.23769999e-01]])
    meta_info['lidar2img'] = np.array(
        [[5.23289349e+02, 3.68831943e+02, 6.10469439e+01],
         [1.09560138e+02, 1.97404735e+02, -5.47377738e+02],
         [1.25930002e-02, 9.92229998e-01, -1.23769999e-01]])
104
105
106

    inputs_dict = dict()

jshilong's avatar
jshilong committed
107
    if with_points:
jshilong's avatar
jshilong committed
108
        points = torch.rand([num_points, points_feat_dim])
109
110
        inputs_dict['points'] = [points]

jshilong's avatar
jshilong committed
111
    if with_img:
Tai-Wang's avatar
Tai-Wang committed
112
113
114
115
116
117
118
119
        if isinstance(img_size, tuple):
            img = torch.rand(3, img_size[0], img_size[1])
            meta_info['img_shape'] = img_size
            meta_info['ori_shape'] = img_size
        else:
            img = torch.rand(3, img_size, img_size)
            meta_info['img_shape'] = (img_size, img_size)
            meta_info['ori_shape'] = (img_size, img_size)
zhangshilong's avatar
zhangshilong committed
120
        meta_info['scale_factor'] = np.array([1., 1.])
121
        inputs_dict['img'] = [img]
zhangshilong's avatar
zhangshilong committed
122

jshilong's avatar
jshilong committed
123
    gt_instance_3d = InstanceData()
zhangshilong's avatar
zhangshilong committed
124

jshilong's avatar
jshilong committed
125
    gt_instance_3d.bboxes_3d = bbox_3d_class[bboxes_3d_type](
126
        torch.rand([num_gt_instance, gt_bboxes_dim]), box_dim=gt_bboxes_dim)
jshilong's avatar
jshilong committed
127
128
    gt_instance_3d.labels_3d = torch.randint(0, num_classes, [num_gt_instance])
    data_sample = Det3DDataSample(
jshilong's avatar
jshilong committed
129
        metainfo=dict(box_type_3d=bbox_3d_class[bboxes_3d_type]))
zhangshilong's avatar
zhangshilong committed
130
    data_sample.set_metainfo(meta_info)
jshilong's avatar
jshilong committed
131
    data_sample.gt_instances_3d = gt_instance_3d
zhangshilong's avatar
zhangshilong committed
132
133
134
135

    gt_instance = InstanceData()
    gt_instance.labels = torch.randint(0, num_classes, [num_gt_instance])
    gt_instance.bboxes = torch.rand(num_gt_instance, 4)
zhangshilong's avatar
zhangshilong committed
136
137
138
    gt_instance.bboxes[:,
                       2:] = gt_instance.bboxes[:, :2] + gt_instance.bboxes[:,
                                                                            2:]
zhangshilong's avatar
zhangshilong committed
139
140

    data_sample.gt_instances = gt_instance
jshilong's avatar
jshilong committed
141
142
143
144
145
146
147
148
    data_sample.gt_pts_seg = PointData()
    if with_pts_instance_mask:
        pts_instance_mask = torch.randint(0, num_gt_instance, [num_points])
        data_sample.gt_pts_seg['pts_instance_mask'] = pts_instance_mask
    if with_pts_semantic_mask:
        pts_semantic_mask = torch.randint(0, num_classes, [num_points])
        data_sample.gt_pts_seg['pts_semantic_mask'] = pts_semantic_mask

149
    return dict(inputs=inputs_dict, data_samples=[data_sample])