model_utils.py 3.35 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
5
6
7
8
9
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import random
from os.path import dirname, exists, join

import numpy as np
import torch
from mmengine import InstanceData

jshilong's avatar
jshilong committed
10
from mmdet3d.core import Det3DDataSample, LiDARInstance3DBoxes, PointData
jshilong's avatar
jshilong committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73


def _setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True


def _get_config_directory():
    """Find the predefined detector config directory."""
    try:
        # Assume we are running in the source mmdetection3d repo
        repo_dpath = dirname(dirname(dirname(__file__)))
    except NameError:
        # For IPython development when this __file__ is not defined
        import mmdet3d
        repo_dpath = dirname(dirname(mmdet3d.__file__))
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def _get_config_module(fname):
    """Load a configuration as a python module."""
    from mmcv import Config
    config_dpath = _get_config_directory()
    config_fpath = join(config_dpath, fname)
    config_mod = Config.fromfile(config_fpath)
    return config_mod


def _get_model_cfg(fname):
    """Grab configs necessary to create a model.

    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
    """
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)

    return model


def _get_detector_cfg(fname):
    """Grab configs necessary to create a detector.

    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
    train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg))
    test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg))

    model.update(train_cfg=train_cfg)
    model.update(test_cfg=test_cfg)
    return model


jshilong's avatar
jshilong committed
74
75
76
77
78
79
80
81
82
83
84
85
def _create_detector_inputs(
    seed=0,
    with_points=True,
    with_img=False,
    num_gt_instance=20,
    num_points=10,
    points_feat_dim=4,
    num_classes=3,
    gt_bboxes_dim=7,
    with_pts_semantic_mask=False,
    with_pts_instance_mask=False,
):
jshilong's avatar
jshilong committed
86
    _setup_seed(seed)
jshilong's avatar
jshilong committed
87
    if with_points:
jshilong's avatar
jshilong committed
88
89
90
        points = torch.rand([num_points, points_feat_dim])
    else:
        points = None
jshilong's avatar
jshilong committed
91
92
    if with_img:
        img = torch.rand(3, 10, 10)
jshilong's avatar
jshilong committed
93
94
95
    else:
        img = None
    inputs_dict = dict(img=img, points=points)
jshilong's avatar
jshilong committed
96
97
    gt_instance_3d = InstanceData()
    gt_instance_3d.bboxes_3d = LiDARInstance3DBoxes(
98
        torch.rand([num_gt_instance, gt_bboxes_dim]), box_dim=gt_bboxes_dim)
jshilong's avatar
jshilong committed
99
100
101
102
    gt_instance_3d.labels_3d = torch.randint(0, num_classes, [num_gt_instance])
    data_sample = Det3DDataSample(
        metainfo=dict(box_type_3d=LiDARInstance3DBoxes))
    data_sample.gt_instances_3d = gt_instance_3d
jshilong's avatar
jshilong committed
103
104
105
106
107
108
109
110
    data_sample.gt_pts_seg = PointData()
    if with_pts_instance_mask:
        pts_instance_mask = torch.randint(0, num_gt_instance, [num_points])
        data_sample.gt_pts_seg['pts_instance_mask'] = pts_instance_mask
    if with_pts_semantic_mask:
        pts_semantic_mask = torch.randint(0, num_classes, [num_points])
        data_sample.gt_pts_seg['pts_semantic_mask'] = pts_semantic_mask

jshilong's avatar
jshilong committed
111
    return dict(inputs=inputs_dict, data_sample=data_sample)