sparse_encoder.py 19 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
Wenbo Yu's avatar
Wenbo Yu committed
2
3
import torch
from mmcv.ops import points_in_boxes_all, three_interpolate, three_nn
4
from mmcv.runner import auto_fp16
zhangwenwei's avatar
zhangwenwei committed
5
from torch import nn as nn
zhangwenwei's avatar
zhangwenwei committed
6

7
from mmdet3d.ops import SparseBasicBlock, make_sparse_convmodule
VVsssssk's avatar
VVsssssk committed
8
from mmdet3d.ops.spconv import IS_SPCONV2_AVAILABLE
Wenbo Yu's avatar
Wenbo Yu committed
9
from mmdet.models.losses import sigmoid_focal_loss, smooth_l1_loss
10
from ..builder import MIDDLE_ENCODERS
zhangwenwei's avatar
zhangwenwei committed
11

VVsssssk's avatar
VVsssssk committed
12
13
14
15
16
if IS_SPCONV2_AVAILABLE:
    from spconv.pytorch import SparseConvTensor, SparseSequential
else:
    from mmcv.ops import SparseConvTensor, SparseSequential

zhangwenwei's avatar
zhangwenwei committed
17

18
@MIDDLE_ENCODERS.register_module()
zhangwenwei's avatar
zhangwenwei committed
19
class SparseEncoder(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
20
    r"""Sparse encoder for SECOND and Part-A2.
wuyuefeng's avatar
wuyuefeng committed
21
22

    Args:
wangtai's avatar
wangtai committed
23
24
        in_channels (int): The number of input channels.
        sparse_shape (list[int]): The sparse shape of input tensor.
25
26
27
        order (list[str], optional): Order of conv module.
            Defaults to ('conv', 'norm', 'act').
        norm_cfg (dict, optional): Config of normalization layer. Defaults to
28
            dict(type='BN1d', eps=1e-3, momentum=0.01).
29
        base_channels (int, optional): Out channels for conv_input layer.
30
            Defaults to 16.
31
        output_channels (int, optional): Out channels for conv_out layer.
32
            Defaults to 128.
33
        encoder_channels (tuple[tuple[int]], optional):
wangtai's avatar
wangtai committed
34
            Convolutional channels of each encode block.
Wenbo Yu's avatar
Wenbo Yu committed
35
            Defaults to ((16, ), (32, 32, 32), (64, 64, 64), (64, 64, 64)).
36
37
        encoder_paddings (tuple[tuple[int]], optional):
            Paddings of each encode block.
Wenbo Yu's avatar
Wenbo Yu committed
38
            Defaults to ((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1, 1)).
39
40
        block_type (str, optional): Type of the block to use.
            Defaults to 'conv_module'.
wuyuefeng's avatar
wuyuefeng committed
41
    """
zhangwenwei's avatar
zhangwenwei committed
42
43
44

    def __init__(self,
                 in_channels,
wuyuefeng's avatar
wuyuefeng committed
45
46
47
48
49
50
51
52
                 sparse_shape,
                 order=('conv', 'norm', 'act'),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 base_channels=16,
                 output_channels=128,
                 encoder_channels=((16, ), (32, 32, 32), (64, 64, 64), (64, 64,
                                                                        64)),
                 encoder_paddings=((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1,
53
54
                                                                 1)),
                 block_type='conv_module'):
zhangwenwei's avatar
zhangwenwei committed
55
        super().__init__()
56
        assert block_type in ['conv_module', 'basicblock']
wuyuefeng's avatar
wuyuefeng committed
57
        self.sparse_shape = sparse_shape
zhangwenwei's avatar
zhangwenwei committed
58
        self.in_channels = in_channels
wuyuefeng's avatar
wuyuefeng committed
59
60
61
62
63
64
        self.order = order
        self.base_channels = base_channels
        self.output_channels = output_channels
        self.encoder_channels = encoder_channels
        self.encoder_paddings = encoder_paddings
        self.stage_num = len(self.encoder_channels)
65
        self.fp16_enabled = False
zhangwenwei's avatar
zhangwenwei committed
66
        # Spconv init all weight on its own
wuyuefeng's avatar
wuyuefeng committed
67
68
69
70
71
72
73
74

        assert isinstance(order, tuple) and len(order) == 3
        assert set(order) == {'conv', 'norm', 'act'}

        if self.order[0] != 'conv':  # pre activate
            self.conv_input = make_sparse_convmodule(
                in_channels,
                self.base_channels,
zhangwenwei's avatar
zhangwenwei committed
75
76
77
                3,
                norm_cfg=norm_cfg,
                padding=1,
wuyuefeng's avatar
wuyuefeng committed
78
79
80
81
82
83
84
                indice_key='subm1',
                conv_type='SubMConv3d',
                order=('conv', ))
        else:  # post activate
            self.conv_input = make_sparse_convmodule(
                in_channels,
                self.base_channels,
zhangwenwei's avatar
zhangwenwei committed
85
86
87
                3,
                norm_cfg=norm_cfg,
                padding=1,
wuyuefeng's avatar
wuyuefeng committed
88
89
90
91
                indice_key='subm1',
                conv_type='SubMConv3d')

        encoder_out_channels = self.make_encoder_layers(
92
93
94
95
            make_sparse_convmodule,
            norm_cfg,
            self.base_channels,
            block_type=block_type)
wuyuefeng's avatar
wuyuefeng committed
96
97
98
99
100
101
102
103
104
105

        self.conv_out = make_sparse_convmodule(
            encoder_out_channels,
            self.output_channels,
            kernel_size=(3, 1, 1),
            stride=(2, 1, 1),
            norm_cfg=norm_cfg,
            padding=0,
            indice_key='spconv_down2',
            conv_type='SparseConv3d')
zhangwenwei's avatar
zhangwenwei committed
106

107
    @auto_fp16(apply_to=('voxel_features', ))
zhangwenwei's avatar
zhangwenwei committed
108
    def forward(self, voxel_features, coors, batch_size):
zhangwenwei's avatar
zhangwenwei committed
109
        """Forward of SparseEncoder.
wuyuefeng's avatar
wuyuefeng committed
110
111

        Args:
Wenbo Yu's avatar
Wenbo Yu committed
112
113
            voxel_features (torch.Tensor): Voxel features in shape (N, C).
            coors (torch.Tensor): Coordinates in shape (N, 4),
wangtai's avatar
wangtai committed
114
115
                the columns in the order of (batch_idx, z_idx, y_idx, x_idx).
            batch_size (int): Batch size.
wuyuefeng's avatar
wuyuefeng committed
116
117

        Returns:
wangtai's avatar
wangtai committed
118
            dict: Backbone features.
zhangwenwei's avatar
zhangwenwei committed
119
120
        """
        coors = coors.int()
121
122
        input_sp_tensor = SparseConvTensor(voxel_features, coors,
                                           self.sparse_shape, batch_size)
zhangwenwei's avatar
zhangwenwei committed
123
124
        x = self.conv_input(input_sp_tensor)

wuyuefeng's avatar
wuyuefeng committed
125
126
127
128
        encode_features = []
        for encoder_layer in self.encoder_layers:
            x = encoder_layer(x)
            encode_features.append(x)
zhangwenwei's avatar
zhangwenwei committed
129
130
131

        # for detection head
        # [200, 176, 5] -> [200, 176, 2]
wuyuefeng's avatar
wuyuefeng committed
132
        out = self.conv_out(encode_features[-1])
zhangwenwei's avatar
zhangwenwei committed
133
134
135
136
137
138
139
        spatial_features = out.dense()

        N, C, D, H, W = spatial_features.shape
        spatial_features = spatial_features.view(N, C * D, H, W)

        return spatial_features

140
141
142
143
144
145
    def make_encoder_layers(self,
                            make_block,
                            norm_cfg,
                            in_channels,
                            block_type='conv_module',
                            conv_cfg=dict(type='SubMConv3d')):
zhangwenwei's avatar
zhangwenwei committed
146
        """make encoder layers using sparse convs.
wuyuefeng's avatar
wuyuefeng committed
147
148

        Args:
wangtai's avatar
wangtai committed
149
150
151
            make_block (method): A bounded function to build blocks.
            norm_cfg (dict[str]): Config of normalization layer.
            in_channels (int): The number of encoder input channels.
152
153
154
            block_type (str, optional): Type of the block to use.
                Defaults to 'conv_module'.
            conv_cfg (dict, optional): Config of conv layer. Defaults to
155
                dict(type='SubMConv3d').
wuyuefeng's avatar
wuyuefeng committed
156
157

        Returns:
wangtai's avatar
wangtai committed
158
            int: The number of encoder output channels.
wuyuefeng's avatar
wuyuefeng committed
159
        """
160
        assert block_type in ['conv_module', 'basicblock']
161
        self.encoder_layers = SparseSequential()
wuyuefeng's avatar
wuyuefeng committed
162
163
164
165
166
167
168

        for i, blocks in enumerate(self.encoder_channels):
            blocks_list = []
            for j, out_channels in enumerate(tuple(blocks)):
                padding = tuple(self.encoder_paddings[i])[j]
                # each stage started with a spconv layer
                # except the first stage
169
                if i != 0 and j == 0 and block_type == 'conv_module':
wuyuefeng's avatar
wuyuefeng committed
170
171
172
173
174
175
176
177
178
179
                    blocks_list.append(
                        make_block(
                            in_channels,
                            out_channels,
                            3,
                            norm_cfg=norm_cfg,
                            stride=2,
                            padding=padding,
                            indice_key=f'spconv{i + 1}',
                            conv_type='SparseConv3d'))
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
                elif block_type == 'basicblock':
                    if j == len(blocks) - 1 and i != len(
                            self.encoder_channels) - 1:
                        blocks_list.append(
                            make_block(
                                in_channels,
                                out_channels,
                                3,
                                norm_cfg=norm_cfg,
                                stride=2,
                                padding=padding,
                                indice_key=f'spconv{i + 1}',
                                conv_type='SparseConv3d'))
                    else:
                        blocks_list.append(
                            SparseBasicBlock(
                                out_channels,
                                out_channels,
                                norm_cfg=norm_cfg,
                                conv_cfg=conv_cfg))
wuyuefeng's avatar
wuyuefeng committed
200
201
202
203
204
205
206
207
208
209
210
211
                else:
                    blocks_list.append(
                        make_block(
                            in_channels,
                            out_channels,
                            3,
                            norm_cfg=norm_cfg,
                            padding=padding,
                            indice_key=f'subm{i + 1}',
                            conv_type='SubMConv3d'))
                in_channels = out_channels
            stage_name = f'encoder_layer{i + 1}'
212
            stage_layers = SparseSequential(*blocks_list)
wuyuefeng's avatar
wuyuefeng committed
213
214
            self.encoder_layers.add_module(stage_name, stage_layers)
        return out_channels
Wenbo Yu's avatar
Wenbo Yu committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491


@MIDDLE_ENCODERS.register_module()
class SparseEncoderSASSD(SparseEncoder):
    r"""Sparse encoder for `SASSD <https://github.com/skyhehe123/SA-SSD>`_

    Args:
        in_channels (int): The number of input channels.
        sparse_shape (list[int]): The sparse shape of input tensor.
        order (list[str], optional): Order of conv module.
            Defaults to ('conv', 'norm', 'act').
        norm_cfg (dict, optional): Config of normalization layer. Defaults to
            dict(type='BN1d', eps=1e-3, momentum=0.01).
        base_channels (int, optional): Out channels for conv_input layer.
            Defaults to 16.
        output_channels (int, optional): Out channels for conv_out layer.
            Defaults to 128.
        encoder_channels (tuple[tuple[int]], optional):
            Convolutional channels of each encode block.
            Defaults to ((16, ), (32, 32, 32), (64, 64, 64), (64, 64, 64)).
        encoder_paddings (tuple[tuple[int]], optional):
            Paddings of each encode block.
            Defaults to ((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1, 1)).
        block_type (str, optional): Type of the block to use.
            Defaults to 'conv_module'.
    """

    def __init__(self,
                 in_channels,
                 sparse_shape,
                 order=('conv', 'norm', 'act'),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 base_channels=16,
                 output_channels=128,
                 encoder_channels=((16, ), (32, 32, 32), (64, 64, 64), (64, 64,
                                                                        64)),
                 encoder_paddings=((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1,
                                                                 1)),
                 block_type='conv_module'):
        super(SparseEncoderSASSD, self).__init__(
            in_channels=in_channels,
            sparse_shape=sparse_shape,
            order=order,
            norm_cfg=norm_cfg,
            base_channels=base_channels,
            output_channels=output_channels,
            encoder_channels=encoder_channels,
            encoder_paddings=encoder_paddings,
            block_type=block_type)

        self.point_fc = nn.Linear(112, 64, bias=False)
        self.point_cls = nn.Linear(64, 1, bias=False)
        self.point_reg = nn.Linear(64, 3, bias=False)

    @auto_fp16(apply_to=('voxel_features', ))
    def forward(self, voxel_features, coors, batch_size, test_mode=False):
        """Forward of SparseEncoder.

        Args:
            voxel_features (torch.Tensor): Voxel features in shape (N, C).
            coors (torch.Tensor): Coordinates in shape (N, 4),
                the columns in the order of (batch_idx, z_idx, y_idx, x_idx).
            batch_size (int): Batch size.
            test_mode (bool, optional): Whether in test mode.
                Defaults to False.

        Returns:
            dict: Backbone features.
            tuple[torch.Tensor]: Mean feature value of the points,
                Classificaion result of the points,
                Regression offsets of the points.
        """
        coors = coors.int()
        input_sp_tensor = SparseConvTensor(voxel_features, coors,
                                           self.sparse_shape, batch_size)
        x = self.conv_input(input_sp_tensor)

        encode_features = []
        for encoder_layer in self.encoder_layers:
            x = encoder_layer(x)
            encode_features.append(x)

        # for detection head
        # [200, 176, 5] -> [200, 176, 2]
        out = self.conv_out(encode_features[-1])
        spatial_features = out.dense()

        N, C, D, H, W = spatial_features.shape
        spatial_features = spatial_features.view(N, C * D, H, W)

        if test_mode:
            return spatial_features, None

        points_mean = torch.zeros_like(voxel_features)
        points_mean[:, 0] = coors[:, 0]
        points_mean[:, 1:] = voxel_features[:, :3]

        # auxiliary network
        p0 = self.make_auxiliary_points(
            encode_features[0],
            points_mean,
            offset=(0, -40., -3.),
            voxel_size=(.1, .1, .2))

        p1 = self.make_auxiliary_points(
            encode_features[1],
            points_mean,
            offset=(0, -40., -3.),
            voxel_size=(.2, .2, .4))

        p2 = self.make_auxiliary_points(
            encode_features[2],
            points_mean,
            offset=(0, -40., -3.),
            voxel_size=(.4, .4, .8))

        pointwise = torch.cat([p0, p1, p2], dim=-1)
        pointwise = self.point_fc(pointwise)
        point_cls = self.point_cls(pointwise)
        point_reg = self.point_reg(pointwise)
        point_misc = (points_mean, point_cls, point_reg)

        return spatial_features, point_misc

    def get_auxiliary_targets(self, nxyz, gt_boxes3d, enlarge=1.0):
        """Get auxiliary target.

        Args:
            nxyz (torch.Tensor): Mean features of the points.
            gt_boxes3d (torch.Tensor): Coordinates in shape (N, 4),
                the columns in the order of (batch_idx, z_idx, y_idx, x_idx).
            enlarge (int, optional): Enlaged scale. Defaults to 1.0.

        Returns:
            tuple[torch.Tensor]: Label of the points and
                center offsets of the points.
        """
        center_offsets = list()
        pts_labels = list()
        for i in range(len(gt_boxes3d)):
            boxes3d = gt_boxes3d[i].tensor.cpu()
            idx = torch.nonzero(nxyz[:, 0] == i).view(-1)
            new_xyz = nxyz[idx, 1:].cpu()

            boxes3d[:, 3:6] *= enlarge

            pts_in_flag, center_offset = self.calculate_pts_offsets(
                new_xyz, boxes3d)
            pts_label = pts_in_flag.max(0)[0].byte()
            pts_labels.append(pts_label)
            center_offsets.append(center_offset)

        center_offsets = torch.cat(center_offsets).cuda()
        pts_labels = torch.cat(pts_labels).to(center_offsets.device)

        return pts_labels, center_offsets

    def calculate_pts_offsets(self, points, boxes):
        """Find all boxes in which each point is, as well as the offsets from
        the box centers.

        Args:
            points (torch.Tensor): [M, 3], [x, y, z] in LiDAR/DEPTH coordinate
            boxes (torch.Tensor): [T, 7],
                num_valid_boxes <= T, [x, y, z, x_size, y_size, z_size, rz],
                (x, y, z) is the bottom center.

        Returns:
            tuple[torch.Tensor]: Point indices of boxes with the shape of
                (T, M). Default background = 0.
                And offsets from the box centers of points,
                if it belows to the box, with the shape of (M, 3).
                Default background = 0.
        """
        boxes_num = len(boxes)
        pts_num = len(points)
        points = points.cuda()
        boxes = boxes.to(points.device)

        box_idxs_of_pts = points_in_boxes_all(points[None, ...], boxes[None,
                                                                       ...])

        pts_indices = box_idxs_of_pts.squeeze(0).transpose(0, 1)

        center_offsets = torch.zeros_like(points).to(points.device)

        for i in range(boxes_num):
            for j in range(pts_num):
                if pts_indices[i][j] == 1:
                    center_offsets[j][0] = points[j][0] - boxes[i][0]
                    center_offsets[j][1] = points[j][1] - boxes[i][1]
                    center_offsets[j][2] = (
                        points[j][2] - (boxes[i][2] + boxes[i][2] / 2.0))
        return pts_indices.cpu(), center_offsets.cpu()

    def aux_loss(self, points, point_cls, point_reg, gt_bboxes):
        """Calculate auxiliary loss.

        Args:
            points (torch.Tensor): Mean feature value of the points.
            point_cls (torch.Tensor): Classificaion result of the points.
            point_reg (torch.Tensor): Regression offsets of the points.
            gt_bboxes (list[:obj:`BaseInstance3DBoxes`]): Ground truth
                boxes for each sample.

        Returns:
            dict: Backbone features.
        """
        num_boxes = len(gt_bboxes)

        pts_labels, center_targets = self.get_auxiliary_targets(
            points, gt_bboxes)

        rpn_cls_target = pts_labels.long()
        pos = (pts_labels > 0).float()
        neg = (pts_labels == 0).float()

        pos_normalizer = pos.sum().clamp(min=1.0)

        cls_weights = pos + neg
        reg_weights = pos
        reg_weights = reg_weights / pos_normalizer

        aux_loss_cls = sigmoid_focal_loss(
            point_cls,
            rpn_cls_target,
            weight=cls_weights,
            avg_factor=pos_normalizer)

        aux_loss_cls /= num_boxes

        weight = reg_weights[..., None]
        aux_loss_reg = smooth_l1_loss(point_reg, center_targets, beta=1 / 9.)
        aux_loss_reg = torch.sum(aux_loss_reg * weight)[None]
        aux_loss_reg /= num_boxes

        aux_loss_cls, aux_loss_reg = [aux_loss_cls], [aux_loss_reg]

        return dict(aux_loss_cls=aux_loss_cls, aux_loss_reg=aux_loss_reg)

    def make_auxiliary_points(self,
                              source_tensor,
                              target,
                              offset=(0., -40., -3.),
                              voxel_size=(.05, .05, .1)):
        """Make auxiliary points for loss computation.

        Args:
            source_tensor (torch.Tensor): (M, C) features to be propigated.
            target (torch.Tensor): (N, 4) bxyz positions of the
                target features.
            offset (tuple[float], optional): Voxelization offset.
                Defaults to (0., -40., -3.)
            voxel_size (tuple[float], optional): Voxelization size.
                Defaults to (.05, .05, .1)

        Returns:
            torch.Tensor: (N, C) tensor of the features of the target features.
        """
        # Tansfer tensor to points
        source = source_tensor.indices.float()
        offset = torch.Tensor(offset).to(source.device)
        voxel_size = torch.Tensor(voxel_size).to(source.device)
        source[:, 1:] = (
            source[:, [3, 2, 1]] * voxel_size + offset + .5 * voxel_size)

        source_feats = source_tensor.features[None, ...].transpose(1, 2)

        # Interplate auxiliary points
        dist, idx = three_nn(target[None, ...], source[None, ...])
        dist_recip = 1.0 / (dist + 1e-8)
        norm = torch.sum(dist_recip, dim=2, keepdim=True)
        weight = dist_recip / norm
        new_features = three_interpolate(source_feats.contiguous(), idx,
                                         weight)

        return new_features.squeeze(0).transpose(0, 1)