sparse_encoder.py 5.85 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
from torch import nn as nn
zhangwenwei's avatar
zhangwenwei committed
2

wuyuefeng's avatar
wuyuefeng committed
3
from mmdet3d.ops import make_sparse_convmodule
zhangwenwei's avatar
zhangwenwei committed
4
from mmdet3d.ops import spconv as spconv
zhangwenwei's avatar
zhangwenwei committed
5
6
7
from ..registry import MIDDLE_ENCODERS


8
@MIDDLE_ENCODERS.register_module()
zhangwenwei's avatar
zhangwenwei committed
9
class SparseEncoder(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
10
    r"""Sparse encoder for SECOND and Part-A2.
wuyuefeng's avatar
wuyuefeng committed
11
12
13
14
15
16
17
18
19
20
21

    Args:
        in_channels (int): the number of input channels
        sparse_shape (list[int]): the sparse shape of input tensor
        norm_cfg (dict): config of normalization layer
        base_channels (int): out channels for conv_input layer
        output_channels (int): out channels for conv_out layer
        encoder_channels (tuple[tuple[int]]):
            conv channels of each encode block
        encoder_paddings (tuple[tuple[int]]): paddings of each encode block
    """
zhangwenwei's avatar
zhangwenwei committed
22
23
24

    def __init__(self,
                 in_channels,
wuyuefeng's avatar
wuyuefeng committed
25
26
27
28
29
30
31
32
33
                 sparse_shape,
                 order=('conv', 'norm', 'act'),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 base_channels=16,
                 output_channels=128,
                 encoder_channels=((16, ), (32, 32, 32), (64, 64, 64), (64, 64,
                                                                        64)),
                 encoder_paddings=((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1,
                                                                 1))):
zhangwenwei's avatar
zhangwenwei committed
34
        super().__init__()
wuyuefeng's avatar
wuyuefeng committed
35
        self.sparse_shape = sparse_shape
zhangwenwei's avatar
zhangwenwei committed
36
        self.in_channels = in_channels
wuyuefeng's avatar
wuyuefeng committed
37
38
39
40
41
42
        self.order = order
        self.base_channels = base_channels
        self.output_channels = output_channels
        self.encoder_channels = encoder_channels
        self.encoder_paddings = encoder_paddings
        self.stage_num = len(self.encoder_channels)
zhangwenwei's avatar
zhangwenwei committed
43
        # Spconv init all weight on its own
wuyuefeng's avatar
wuyuefeng committed
44
45
46
47
48
49
50
51

        assert isinstance(order, tuple) and len(order) == 3
        assert set(order) == {'conv', 'norm', 'act'}

        if self.order[0] != 'conv':  # pre activate
            self.conv_input = make_sparse_convmodule(
                in_channels,
                self.base_channels,
zhangwenwei's avatar
zhangwenwei committed
52
53
54
                3,
                norm_cfg=norm_cfg,
                padding=1,
wuyuefeng's avatar
wuyuefeng committed
55
56
57
58
59
60
61
                indice_key='subm1',
                conv_type='SubMConv3d',
                order=('conv', ))
        else:  # post activate
            self.conv_input = make_sparse_convmodule(
                in_channels,
                self.base_channels,
zhangwenwei's avatar
zhangwenwei committed
62
63
64
                3,
                norm_cfg=norm_cfg,
                padding=1,
wuyuefeng's avatar
wuyuefeng committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
                indice_key='subm1',
                conv_type='SubMConv3d')

        encoder_out_channels = self.make_encoder_layers(
            make_sparse_convmodule, norm_cfg, self.base_channels)

        self.conv_out = make_sparse_convmodule(
            encoder_out_channels,
            self.output_channels,
            kernel_size=(3, 1, 1),
            stride=(2, 1, 1),
            norm_cfg=norm_cfg,
            padding=0,
            indice_key='spconv_down2',
            conv_type='SparseConv3d')
zhangwenwei's avatar
zhangwenwei committed
80
81

    def forward(self, voxel_features, coors, batch_size):
zhangwenwei's avatar
zhangwenwei committed
82
        """Forward of SparseEncoder.
wuyuefeng's avatar
wuyuefeng committed
83
84
85
86
87
88
89
90

        Args:
            voxel_features (torch.float32): shape [N, C]
            coors (torch.int32): shape [N, 4](batch_idx, z_idx, y_idx, x_idx)
            batch_size (int): batch size

        Returns:
            dict: backbone features
zhangwenwei's avatar
zhangwenwei committed
91
92
93
94
95
96
97
        """
        coors = coors.int()
        input_sp_tensor = spconv.SparseConvTensor(voxel_features, coors,
                                                  self.sparse_shape,
                                                  batch_size)
        x = self.conv_input(input_sp_tensor)

wuyuefeng's avatar
wuyuefeng committed
98
99
100
101
        encode_features = []
        for encoder_layer in self.encoder_layers:
            x = encoder_layer(x)
            encode_features.append(x)
zhangwenwei's avatar
zhangwenwei committed
102
103
104

        # for detection head
        # [200, 176, 5] -> [200, 176, 2]
wuyuefeng's avatar
wuyuefeng committed
105
        out = self.conv_out(encode_features[-1])
zhangwenwei's avatar
zhangwenwei committed
106
107
108
109
110
111
112
        spatial_features = out.dense()

        N, C, D, H, W = spatial_features.shape
        spatial_features = spatial_features.view(N, C * D, H, W)

        return spatial_features

wuyuefeng's avatar
wuyuefeng committed
113
    def make_encoder_layers(self, make_block, norm_cfg, in_channels):
zhangwenwei's avatar
zhangwenwei committed
114
        """make encoder layers using sparse convs.
wuyuefeng's avatar
wuyuefeng committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

        Args:
            make_block (method): a bounded function to build blocks
            norm_cfg (dict[str]): config of normalization layer
            in_channels (int): the number of encoder input channels

        Returns:
            int: the number of encoder output channels
        """
        self.encoder_layers = spconv.SparseSequential()

        for i, blocks in enumerate(self.encoder_channels):
            blocks_list = []
            for j, out_channels in enumerate(tuple(blocks)):
                padding = tuple(self.encoder_paddings[i])[j]
                # each stage started with a spconv layer
                # except the first stage
                if i != 0 and j == 0:
                    blocks_list.append(
                        make_block(
                            in_channels,
                            out_channels,
                            3,
                            norm_cfg=norm_cfg,
                            stride=2,
                            padding=padding,
                            indice_key=f'spconv{i + 1}',
                            conv_type='SparseConv3d'))
                else:
                    blocks_list.append(
                        make_block(
                            in_channels,
                            out_channels,
                            3,
                            norm_cfg=norm_cfg,
                            padding=padding,
                            indice_key=f'subm{i + 1}',
                            conv_type='SubMConv3d'))
                in_channels = out_channels
            stage_name = f'encoder_layer{i + 1}'
            stage_layers = spconv.SparseSequential(*blocks_list)
            self.encoder_layers.add_module(stage_name, stage_layers)
        return out_channels