s3dis_dataset.py 16.9 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
from os import path as osp

4
5
import numpy as np

6
from mmdet3d.core import show_seg_result
7
from mmdet3d.core.bbox import DepthInstance3DBoxes
8
from mmseg.datasets import DATASETS as SEG_DATASETS
9
from .builder import DATASETS
10
from .custom_3d import Custom3DDataset
11
12
13
14
15
from .custom_3d_seg import Custom3DSegDataset
from .pipelines import Compose


@DATASETS.register_module()
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
class S3DISDataset(Custom3DDataset):
    r"""S3DIS Dataset for Detection Task.

    This class is the inner dataset for S3DIS. Since S3DIS has 6 areas, we
    often train on 5 of them and test on the remaining one. The one for
    test is Area_5 as suggested in `GSDN <https://arxiv.org/abs/2006.12356>`_.
    To concatenate 5 areas during training
    `mmdet.datasets.dataset_wrappers.ConcatDataset` should be used.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'Depth' in this dataset. Available options includes

            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
    CLASSES = ('table', 'chair', 'sofa', 'bookcase', 'board')

    def __init__(self,
                 data_root,
                 ann_file,
                 pipeline=None,
                 classes=None,
                 modality=None,
                 box_type_3d='Depth',
                 filter_empty_gt=True,
57
58
                 test_mode=False,
                 *kwargs):
59
60
61
62
63
64
65
66
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
67
68
            test_mode=test_mode,
            *kwargs)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

    def get_ann_info(self, index):
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: annotation information consists of the following keys:

                - gt_bboxes_3d (:obj:`DepthInstance3DBoxes`):
                    3D ground truth bboxes
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - pts_instance_mask_path (str): Path of instance masks.
                - pts_semantic_mask_path (str): Path of semantic masks.
        """
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.data_infos[index]
        if info['annos']['gt_num'] != 0:
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
                np.float32)  # k, 6
WRH's avatar
WRH committed
90
            gt_labels_3d = info['annos']['class'].astype(np.int64)
91
92
        else:
            gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
WRH's avatar
WRH committed
93
            gt_labels_3d = np.zeros((0, ), dtype=np.int64)
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

        # to target box structure
        gt_bboxes_3d = DepthInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
            with_yaw=False,
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

        pts_instance_mask_path = osp.join(self.data_root,
                                          info['pts_instance_mask_path'])
        pts_semantic_mask_path = osp.join(self.data_root,
                                          info['pts_semantic_mask_path'])

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
            gt_labels_3d=gt_labels_3d,
            pts_instance_mask_path=pts_instance_mask_path,
            pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results

    def get_data_info(self, index):
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
            dict: Data information that will be passed to the data
                preprocessing pipelines. It includes the following keys:

                - pts_filename (str): Filename of point clouds.
                - file_name (str): Filename of point clouds.
                - ann_info (dict): Annotation info.
        """
        info = self.data_infos[index]
        pts_filename = osp.join(self.data_root, info['pts_path'])
        input_dict = dict(pts_filename=pts_filename)

        if not self.test_mode:
            annos = self.get_ann_info(index)
            input_dict['ann_info'] = annos
            if self.filter_empty_gt and ~(annos['gt_labels_3d'] != -1).any():
                return None
        return input_dict

    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                load_dim=6,
                use_dim=[0, 1, 2, 3, 4, 5]),
            dict(
                type='DefaultFormatBundle3D',
                class_names=self.CLASSES,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ]
        return Compose(pipeline)


157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
class _S3DISSegDataset(Custom3DSegDataset):
    r"""S3DIS Dataset for Semantic Segmentation Task.

    This class is the inner dataset for S3DIS. Since S3DIS has 6 areas, we
    often train on 5 of them and test on the remaining one.
    However, there is not a fixed train-test split of S3DIS. People often test
    on Area_5 as suggested by `SEGCloud <https://arxiv.org/abs/1710.07563>`_.
    But many papers also report the average results of 6-fold cross validation
    over the 6 areas (e.g. `DGCNN <https://arxiv.org/abs/1801.07829>`_).
    Therefore, we use an inner dataset for one area, and further use a dataset
    wrapper to concat all the provided data in different areas.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        palette (list[list[int]], optional): The palette of segmentation map.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
182
        ignore_index (int, optional): The label index to be ignored, e.g.
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
            unannotated points. If None is given, set to len(self.CLASSES).
            Defaults to None.
        scene_idxs (np.ndarray | str, optional): Precomputed index to load
            data. For scenes with many points, we may sample it several times.
            Defaults to None.
    """
    CLASSES = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',
               'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter')

    VALID_CLASS_IDS = tuple(range(13))

    ALL_CLASS_IDS = tuple(range(14))  # possibly with 'stair' class

    PALETTE = [[0, 255, 0], [0, 0, 255], [0, 255, 255], [255, 255, 0],
               [255, 0, 255], [100, 100, 255], [200, 200, 100],
               [170, 120, 200], [255, 0, 0], [200, 100, 100], [10, 200, 100],
               [200, 200, 200], [50, 50, 50]]

    def __init__(self,
                 data_root,
                 ann_file,
                 pipeline=None,
                 classes=None,
                 palette=None,
                 modality=None,
                 test_mode=False,
                 ignore_index=None,
210
211
                 scene_idxs=None,
                 **kwargs):
212
213
214
215
216
217
218
219
220
221

        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            palette=palette,
            modality=modality,
            test_mode=test_mode,
            ignore_index=ignore_index,
222
223
            scene_idxs=scene_idxs,
            **kwargs)
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

    def get_ann_info(self, index):
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: annotation information consists of the following keys:

                - pts_semantic_mask_path (str): Path of semantic masks.
        """
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.data_infos[index]

        pts_semantic_mask_path = osp.join(self.data_root,
                                          info['pts_semantic_mask_path'])

        anns_results = dict(pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results

    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                use_color=True,
                load_dim=6,
                use_dim=[0, 1, 2, 3, 4, 5]),
            dict(
                type='LoadAnnotations3D',
                with_bbox_3d=False,
                with_label_3d=False,
                with_mask_3d=False,
                with_seg_3d=True),
            dict(
                type='PointSegClassMapping',
263
264
                valid_cat_ids=self.VALID_CLASS_IDS,
                max_cat_id=np.max(self.ALL_CLASS_IDS)),
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
            dict(
                type='DefaultFormatBundle3D',
                with_label=False,
                class_names=self.CLASSES),
            dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
        ]
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
            show (bool): Visualize the results online.
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
        """
        assert out_dir is not None, 'Expect out_dir, got none.'
        pipeline = self._get_pipeline(pipeline)
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
            points, gt_sem_mask = self._extract_data(
                i, pipeline, ['points', 'pts_semantic_mask'], load_annos=True)
            points = points.numpy()
            pred_sem_mask = result['semantic_mask'].numpy()
            show_seg_result(points, gt_sem_mask,
                            pred_sem_mask, out_dir, file_name,
                            np.array(self.PALETTE), self.ignore_index, show)

297
298
    def get_scene_idxs(self, scene_idxs):
        """Compute scene_idxs for data sampling.
299

300
        We sample more times for scenes with more points.
301
302
303
304
305
306
        """
        # when testing, we load one whole scene every time
        if not self.test_mode and scene_idxs is None:
            raise NotImplementedError(
                'please provide re-sampled scene indexes for training')

307
        return super().get_scene_idxs(scene_idxs)
308
309
310


@DATASETS.register_module()
311
@SEG_DATASETS.register_module()
312
313
314
315
316
317
class S3DISSegDataset(_S3DISSegDataset):
    r"""S3DIS Dataset for Semantic Segmentation Task.

    This class serves as the API for experiments on the S3DIS Dataset.
    It wraps the provided datasets of different areas.
    We don't use `mmdet.datasets.dataset_wrappers.ConcatDataset` because we
318
    need to concat the `scene_idxs` of different areas.
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

    Please refer to the `google form <https://docs.google.com/forms/d/e/1FAIpQL
    ScDimvNMCGhy_rmBA2gHfDu3naktRm6A8BPwAWWDv-Uhm6Shw/viewform?c=0&w=1>`_ for
    data downloading.

    Args:
        data_root (str): Path of dataset root.
        ann_files (list[str]): Path of several annotation files.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        palette (list[list[int]], optional): The palette of segmentation map.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
337
        ignore_index (int, optional): The label index to be ignored, e.g.
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
            unannotated points. If None is given, set to len(self.CLASSES).
            Defaults to None.
        scene_idxs (list[np.ndarray] | list[str], optional): Precomputed index
            to load data. For scenes with many points, we may sample it several
            times. Defaults to None.
    """

    def __init__(self,
                 data_root,
                 ann_files,
                 pipeline=None,
                 classes=None,
                 palette=None,
                 modality=None,
                 test_mode=False,
                 ignore_index=None,
354
355
                 scene_idxs=None,
                 **kwargs):
356

357
        # make sure that ann_files and scene_idxs have same length
358
359
360
361
362
363
364
365
366
367
368
369
370
        ann_files = self._check_ann_files(ann_files)
        scene_idxs = self._check_scene_idxs(scene_idxs, len(ann_files))

        # initialize some attributes as datasets[0]
        super().__init__(
            data_root=data_root,
            ann_file=ann_files[0],
            pipeline=pipeline,
            classes=classes,
            palette=palette,
            modality=modality,
            test_mode=test_mode,
            ignore_index=ignore_index,
371
372
            scene_idxs=scene_idxs[0],
            **kwargs)
373
374
375
376
377
378
379
380
381
382
383

        datasets = [
            _S3DISSegDataset(
                data_root=data_root,
                ann_file=ann_files[i],
                pipeline=pipeline,
                classes=classes,
                palette=palette,
                modality=modality,
                test_mode=test_mode,
                ignore_index=ignore_index,
384
385
                scene_idxs=scene_idxs[i],
                **kwargs) for i in range(len(ann_files))
386
387
        ]

388
        # data_infos and scene_idxs need to be concat
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
        self.concat_data_infos([dst.data_infos for dst in datasets])
        self.concat_scene_idxs([dst.scene_idxs for dst in datasets])

        # set group flag for the sampler
        if not self.test_mode:
            self._set_group_flag()

    def concat_data_infos(self, data_infos):
        """Concat data_infos from several datasets to form self.data_infos.

        Args:
            data_infos (list[list[dict]])
        """
        self.data_infos = [
            info for one_data_infos in data_infos for info in one_data_infos
        ]

    def concat_scene_idxs(self, scene_idxs):
        """Concat scene_idxs from several datasets to form self.scene_idxs.

        Needs to manually add offset to scene_idxs[1, 2, ...].

        Args:
            scene_idxs (list[np.ndarray])
        """
        self.scene_idxs = np.array([], dtype=np.int32)
        offset = 0
        for one_scene_idxs in scene_idxs:
            self.scene_idxs = np.concatenate(
                [self.scene_idxs, one_scene_idxs + offset]).astype(np.int32)
            offset = np.unique(self.scene_idxs).max() + 1

    @staticmethod
    def _duplicate_to_list(x, num):
        """Repeat x `num` times to form a list."""
        return [x for _ in range(num)]

    def _check_ann_files(self, ann_file):
        """Make ann_files as list/tuple."""
        # ann_file could be str
        if not isinstance(ann_file, (list, tuple)):
            ann_file = self._duplicate_to_list(ann_file, 1)
        return ann_file

    def _check_scene_idxs(self, scene_idx, num):
        """Make scene_idxs as list/tuple."""
        if scene_idx is None:
            return self._duplicate_to_list(scene_idx, num)
        # scene_idx could be str, np.ndarray, list or tuple
        if isinstance(scene_idx, str):  # str
            return self._duplicate_to_list(scene_idx, num)
        if isinstance(scene_idx[0], str):  # list of str
            return scene_idx
        if isinstance(scene_idx[0], (list, tuple, np.ndarray)):  # list of idx
            return scene_idx
        # single idx
        return self._duplicate_to_list(scene_idx, num)