s3dis_dataset.py 13.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import numpy as np
from os import path as osp

from mmdet3d.core import show_seg_result
from mmdet.datasets import DATASETS
from .custom_3d_seg import Custom3DSegDataset
from .pipelines import Compose


@DATASETS.register_module()
class _S3DISSegDataset(Custom3DSegDataset):
    r"""S3DIS Dataset for Semantic Segmentation Task.

    This class is the inner dataset for S3DIS. Since S3DIS has 6 areas, we
    often train on 5 of them and test on the remaining one.
    However, there is not a fixed train-test split of S3DIS. People often test
    on Area_5 as suggested by `SEGCloud <https://arxiv.org/abs/1710.07563>`_.
    But many papers also report the average results of 6-fold cross validation
    over the 6 areas (e.g. `DGCNN <https://arxiv.org/abs/1801.07829>`_).
    Therefore, we use an inner dataset for one area, and further use a dataset
    wrapper to concat all the provided data in different areas.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        palette (list[list[int]], optional): The palette of segmentation map.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
        ignore_index (int, optional): The label index to be ignored, e.g. \
            unannotated points. If None is given, set to len(self.CLASSES).
            Defaults to None.
        scene_idxs (np.ndarray | str, optional): Precomputed index to load
            data. For scenes with many points, we may sample it several times.
            Defaults to None.
        label_weight (np.ndarray | str, optional): Precomputed weight to \
            balance loss calculation. If None is given, compute from data.
            Defaults to None.
    """
    CLASSES = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',
               'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter')

    VALID_CLASS_IDS = tuple(range(13))

    ALL_CLASS_IDS = tuple(range(14))  # possibly with 'stair' class

    PALETTE = [[0, 255, 0], [0, 0, 255], [0, 255, 255], [255, 255, 0],
               [255, 0, 255], [100, 100, 255], [200, 200, 100],
               [170, 120, 200], [255, 0, 0], [200, 100, 100], [10, 200, 100],
               [200, 200, 200], [50, 50, 50]]

    def __init__(self,
                 data_root,
                 ann_file,
                 pipeline=None,
                 classes=None,
                 palette=None,
                 modality=None,
                 test_mode=False,
                 ignore_index=None,
                 scene_idxs=None,
                 label_weight=None):

        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            palette=palette,
            modality=modality,
            test_mode=test_mode,
            ignore_index=ignore_index,
            scene_idxs=scene_idxs,
            label_weight=label_weight)

    def get_ann_info(self, index):
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: annotation information consists of the following keys:

                - pts_semantic_mask_path (str): Path of semantic masks.
        """
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.data_infos[index]

        pts_semantic_mask_path = osp.join(self.data_root,
                                          info['pts_semantic_mask_path'])

        anns_results = dict(pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results

    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                use_color=True,
                load_dim=6,
                use_dim=[0, 1, 2, 3, 4, 5]),
            dict(
                type='LoadAnnotations3D',
                with_bbox_3d=False,
                with_label_3d=False,
                with_mask_3d=False,
                with_seg_3d=True),
            dict(
                type='PointSegClassMapping',
120
121
                valid_cat_ids=self.VALID_CLASS_IDS,
                max_cat_id=np.max(self.ALL_CLASS_IDS)),
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
            dict(
                type='DefaultFormatBundle3D',
                with_label=False,
                class_names=self.CLASSES),
            dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
        ]
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
            show (bool): Visualize the results online.
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
        """
        assert out_dir is not None, 'Expect out_dir, got none.'
        pipeline = self._get_pipeline(pipeline)
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
            points, gt_sem_mask = self._extract_data(
                i, pipeline, ['points', 'pts_semantic_mask'], load_annos=True)
            points = points.numpy()
            pred_sem_mask = result['semantic_mask'].numpy()
            show_seg_result(points, gt_sem_mask,
                            pred_sem_mask, out_dir, file_name,
                            np.array(self.PALETTE), self.ignore_index, show)

    def get_scene_idxs_and_label_weight(self, scene_idxs, label_weight):
        """Compute scene_idxs for data sampling and label weight for loss \
        calculation.

        We sample more times for scenes with more points. Label_weight is
        inversely proportional to number of class points.
        """
        # when testing, we load one whole scene every time
        # and we don't need label weight for loss calculation
        if not self.test_mode and scene_idxs is None:
            raise NotImplementedError(
                'please provide re-sampled scene indexes for training')

        return super().get_scene_idxs_and_label_weight(scene_idxs,
                                                       label_weight)


@DATASETS.register_module()
class S3DISSegDataset(_S3DISSegDataset):
    r"""S3DIS Dataset for Semantic Segmentation Task.

    This class serves as the API for experiments on the S3DIS Dataset.
    It wraps the provided datasets of different areas.
    We don't use `mmdet.datasets.dataset_wrappers.ConcatDataset` because we
    need to concat the `scene_idxs` and `label_weights` of different areas.

    Please refer to the `google form <https://docs.google.com/forms/d/e/1FAIpQL
    ScDimvNMCGhy_rmBA2gHfDu3naktRm6A8BPwAWWDv-Uhm6Shw/viewform?c=0&w=1>`_ for
    data downloading.

    Args:
        data_root (str): Path of dataset root.
        ann_files (list[str]): Path of several annotation files.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        palette (list[list[int]], optional): The palette of segmentation map.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
        ignore_index (int, optional): The label index to be ignored, e.g. \
            unannotated points. If None is given, set to len(self.CLASSES).
            Defaults to None.
        scene_idxs (list[np.ndarray] | list[str], optional): Precomputed index
            to load data. For scenes with many points, we may sample it several
            times. Defaults to None.
        label_weights (list[np.ndarray] | list[str], optional): Precomputed
            weight to balance loss calculation. If None is given, compute from
            data. Defaults to None.
    """

    def __init__(self,
                 data_root,
                 ann_files,
                 pipeline=None,
                 classes=None,
                 palette=None,
                 modality=None,
                 test_mode=False,
                 ignore_index=None,
                 scene_idxs=None,
                 label_weights=None):

        # make sure that ann_files, scene_idxs and label_weights have same len
        ann_files = self._check_ann_files(ann_files)
        scene_idxs = self._check_scene_idxs(scene_idxs, len(ann_files))
        label_weights = self._check_label_weights(label_weights,
                                                  len(ann_files))

        # initialize some attributes as datasets[0]
        super().__init__(
            data_root=data_root,
            ann_file=ann_files[0],
            pipeline=pipeline,
            classes=classes,
            palette=palette,
            modality=modality,
            test_mode=test_mode,
            ignore_index=ignore_index,
            scene_idxs=scene_idxs[0],
            label_weight=label_weights[0])

        datasets = [
            _S3DISSegDataset(
                data_root=data_root,
                ann_file=ann_files[i],
                pipeline=pipeline,
                classes=classes,
                palette=palette,
                modality=modality,
                test_mode=test_mode,
                ignore_index=ignore_index,
                scene_idxs=scene_idxs[i],
                label_weight=label_weights[i]) for i in range(len(ann_files))
        ]

        # data_infos, scene_idxs, label_weight need to be concat
        self.concat_data_infos([dst.data_infos for dst in datasets])
        self.concat_scene_idxs([dst.scene_idxs for dst in datasets])
        self.concat_label_weight([dst.label_weight for dst in datasets])

        # set group flag for the sampler
        if not self.test_mode:
            self._set_group_flag()

    def concat_data_infos(self, data_infos):
        """Concat data_infos from several datasets to form self.data_infos.

        Args:
            data_infos (list[list[dict]])
        """
        self.data_infos = [
            info for one_data_infos in data_infos for info in one_data_infos
        ]

    def concat_scene_idxs(self, scene_idxs):
        """Concat scene_idxs from several datasets to form self.scene_idxs.

        Needs to manually add offset to scene_idxs[1, 2, ...].

        Args:
            scene_idxs (list[np.ndarray])
        """
        self.scene_idxs = np.array([], dtype=np.int32)
        offset = 0
        for one_scene_idxs in scene_idxs:
            self.scene_idxs = np.concatenate(
                [self.scene_idxs, one_scene_idxs + offset]).astype(np.int32)
            offset = np.unique(self.scene_idxs).max() + 1

    def concat_label_weight(self, label_weights):
        """Concat label_weight from several datasets to form self.label_weight.

        Args:
            label_weights (list[np.ndarray])
        """
        # TODO: simply average them?
        self.label_weight = np.array(label_weights).mean(0).astype(np.float32)

    @staticmethod
    def _duplicate_to_list(x, num):
        """Repeat x `num` times to form a list."""
        return [x for _ in range(num)]

    def _check_ann_files(self, ann_file):
        """Make ann_files as list/tuple."""
        # ann_file could be str
        if not isinstance(ann_file, (list, tuple)):
            ann_file = self._duplicate_to_list(ann_file, 1)
        return ann_file

    def _check_scene_idxs(self, scene_idx, num):
        """Make scene_idxs as list/tuple."""
        if scene_idx is None:
            return self._duplicate_to_list(scene_idx, num)
        # scene_idx could be str, np.ndarray, list or tuple
        if isinstance(scene_idx, str):  # str
            return self._duplicate_to_list(scene_idx, num)
        if isinstance(scene_idx[0], str):  # list of str
            return scene_idx
        if isinstance(scene_idx[0], (list, tuple, np.ndarray)):  # list of idx
            return scene_idx
        # single idx
        return self._duplicate_to_list(scene_idx, num)

    def _check_label_weights(self, label_weight, num):
        """Make label_weights as list/tuple."""
        if label_weight is None:
            return self._duplicate_to_list(label_weight, num)
        # label_weight could be str, np.ndarray, list or tuple
        if isinstance(label_weight, str):  # str
            return self._duplicate_to_list(label_weight, num)
        if isinstance(label_weight[0], str):  # list of str
            return label_weight
        if isinstance(label_weight[0], (list, tuple, np.ndarray)):  # list of w
            return label_weight
        # single weight
        return self._duplicate_to_list(label_weight, num)