fcos_mono3d_head.py 41.7 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
twang's avatar
twang committed
2
3
import numpy as np
import torch
4
from logging import warning
5
from mmcv.cnn import Scale
twang's avatar
twang committed
6
7
8
from mmcv.runner import force_fp32
from torch import nn as nn

9
10
from mmdet3d.core import (box3d_multiclass_nms, limit_period, points_img2cam,
                          xywhr2xyxyr)
twang's avatar
twang committed
11
from mmdet.core import multi_apply
Tai-Wang's avatar
Tai-Wang committed
12
from mmdet.core.bbox.builder import build_bbox_coder
twang's avatar
twang committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from mmdet.models.builder import HEADS, build_loss
from .anchor_free_mono3d_head import AnchorFreeMono3DHead

INF = 1e8


@HEADS.register_module()
class FCOSMono3DHead(AnchorFreeMono3DHead):
    """Anchor-free head used in FCOS3D.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
27
        regress_ranges (tuple[tuple[int, int]], optional): Regress range of multiple
twang's avatar
twang committed
28
            level points.
29
30
31
        center_sampling (bool, optional): If true, use center sampling. Default: True.
        center_sample_radius (float, optional): Radius of center sampling. Default: 1.5.
        norm_on_bbox (bool, optional): If true, normalize the regression targets
twang's avatar
twang committed
32
            with FPN strides. Default: True.
33
        centerness_on_reg (bool, optional): If true, position centerness on the
twang's avatar
twang committed
34
35
            regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042.
            Default: True.
36
37
38
39
40
41
42
43
        centerness_alpha (int, optional): Parameter used to adjust the intensity
            attenuation from the center to the periphery. Default: 2.5.
        loss_cls (dict, optional): Config of classification loss.
        loss_bbox (dict, optional): Config of localization loss.
        loss_dir (dict, optional): Config of direction classification loss.
        loss_attr (dict, optional): Config of attribute classification loss.
        loss_centerness (dict, optional): Config of centerness loss.
        norm_cfg (dict, optional): dictionary to construct and config norm layer.
twang's avatar
twang committed
44
            Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True).
45
        centerness_branch (tuple[int], optional): Channels for centerness branch.
twang's avatar
twang committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
            Default: (64, ).
    """  # noqa: E501

    def __init__(self,
                 num_classes,
                 in_channels,
                 regress_ranges=((-1, 48), (48, 96), (96, 192), (192, 384),
                                 (384, INF)),
                 center_sampling=True,
                 center_sample_radius=1.5,
                 norm_on_bbox=True,
                 centerness_on_reg=True,
                 centerness_alpha=2.5,
                 loss_cls=dict(
                     type='FocalLoss',
                     use_sigmoid=True,
                     gamma=2.0,
                     alpha=0.25,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
                 loss_dir=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=False,
                     loss_weight=1.0),
                 loss_attr=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=False,
                     loss_weight=1.0),
                 loss_centerness=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
Tai-Wang's avatar
Tai-Wang committed
79
                 bbox_coder=dict(type='FCOS3DBBoxCoder', code_size=9),
twang's avatar
twang committed
80
81
                 norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
                 centerness_branch=(64, ),
82
                 init_cfg=None,
twang's avatar
twang committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
                 **kwargs):
        self.regress_ranges = regress_ranges
        self.center_sampling = center_sampling
        self.center_sample_radius = center_sample_radius
        self.norm_on_bbox = norm_on_bbox
        self.centerness_on_reg = centerness_on_reg
        self.centerness_alpha = centerness_alpha
        self.centerness_branch = centerness_branch
        super().__init__(
            num_classes,
            in_channels,
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            loss_dir=loss_dir,
            loss_attr=loss_attr,
            norm_cfg=norm_cfg,
99
            init_cfg=init_cfg,
twang's avatar
twang committed
100
101
            **kwargs)
        self.loss_centerness = build_loss(loss_centerness)
Tai-Wang's avatar
Tai-Wang committed
102
103
        bbox_coder['code_size'] = self.bbox_code_size
        self.bbox_coder = build_bbox_coder(bbox_coder)
104
105
106
107
108
109
110
        if init_cfg is None:
            self.init_cfg = dict(
                type='Normal',
                layer='Conv2d',
                std=0.01,
                override=dict(
                    type='Normal', name='conv_cls', std=0.01, bias_prob=0.01))
twang's avatar
twang committed
111
112
113
114
115
116
117
118

    def _init_layers(self):
        """Initialize layers of the head."""
        super()._init_layers()
        self.conv_centerness_prev = self._init_branch(
            conv_channels=self.centerness_branch,
            conv_strides=(1, ) * len(self.centerness_branch))
        self.conv_centerness = nn.Conv2d(self.centerness_branch[-1], 1, 1)
Tai-Wang's avatar
Tai-Wang committed
119
        self.scale_dim = 3  # only for offset, depth and size regression
twang's avatar
twang committed
120
        self.scales = nn.ModuleList([
Tai-Wang's avatar
Tai-Wang committed
121
122
123
            nn.ModuleList([Scale(1.0) for _ in range(self.scale_dim)])
            for _ in self.strides
        ])
twang's avatar
twang committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

    def forward(self, feats):
        """Forward features from the upstream network.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple:
                cls_scores (list[Tensor]): Box scores for each scale level,
                    each is a 4D-tensor, the channel number is
                    num_points * num_classes.
                bbox_preds (list[Tensor]): Box energies / deltas for each scale
                    level, each is a 4D-tensor, the channel number is
                    num_points * bbox_code_size.
                dir_cls_preds (list[Tensor]): Box scores for direction class
                    predictions on each scale level, each is a 4D-tensor,
                    the channel number is num_points * 2. (bin = 2).
                attr_preds (list[Tensor]): Attribute scores for each scale
                    level, each is a 4D-tensor, the channel number is
                    num_points * num_attrs.
                centernesses (list[Tensor]): Centerness for each scale level,
                    each is a 4D-tensor, the channel number is num_points * 1.
        """
Tai-Wang's avatar
Tai-Wang committed
149
        # Note: we use [:5] to filter feats and only return predictions
twang's avatar
twang committed
150
        return multi_apply(self.forward_single, feats, self.scales,
Tai-Wang's avatar
Tai-Wang committed
151
                           self.strides)[:5]
twang's avatar
twang committed
152
153

    def forward_single(self, x, scale, stride):
154
        """Forward features of a single scale level.
twang's avatar
twang committed
155
156
157
158
159
160
161
162
163
164

        Args:
            x (Tensor): FPN feature maps of the specified stride.
            scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
                the bbox prediction.
            stride (int): The corresponding stride for feature maps, only
                used to normalize the bbox prediction when self.norm_on_bbox
                is True.

        Returns:
165
            tuple: scores for each class, bbox and direction class
twang's avatar
twang committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
                predictions, centerness predictions of input feature maps.
        """
        cls_score, bbox_pred, dir_cls_pred, attr_pred, cls_feat, reg_feat = \
            super().forward_single(x)

        if self.centerness_on_reg:
            clone_reg_feat = reg_feat.clone()
            for conv_centerness_prev_layer in self.conv_centerness_prev:
                clone_reg_feat = conv_centerness_prev_layer(clone_reg_feat)
            centerness = self.conv_centerness(clone_reg_feat)
        else:
            clone_cls_feat = cls_feat.clone()
            for conv_centerness_prev_layer in self.conv_centerness_prev:
                clone_cls_feat = conv_centerness_prev_layer(clone_cls_feat)
            centerness = self.conv_centerness(clone_cls_feat)

Tai-Wang's avatar
Tai-Wang committed
182
183
        bbox_pred = self.bbox_coder.decode(bbox_pred, scale, stride,
                                           self.training, cls_score)
twang's avatar
twang committed
184

Tai-Wang's avatar
Tai-Wang committed
185
186
        return cls_score, bbox_pred, dir_cls_pred, attr_pred, centerness, \
            cls_feat, reg_feat
twang's avatar
twang committed
187
188
189
190
191
192
193
194
195
196
197
198

    @staticmethod
    def add_sin_difference(boxes1, boxes2):
        """Convert the rotation difference to difference in sine function.

        Args:
            boxes1 (torch.Tensor): Original Boxes in shape (NxC), where C>=7
                and the 7th dimension is rotation dimension.
            boxes2 (torch.Tensor): Target boxes in shape (NxC), where C>=7 and
                the 7th dimension is rotation dimension.

        Returns:
199
            tuple[torch.Tensor]: ``boxes1`` and ``boxes2`` whose 7th
twang's avatar
twang committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
                dimensions are changed.
        """
        rad_pred_encoding = torch.sin(boxes1[..., 6:7]) * torch.cos(
            boxes2[..., 6:7])
        rad_tg_encoding = torch.cos(boxes1[..., 6:7]) * torch.sin(boxes2[...,
                                                                         6:7])
        boxes1 = torch.cat(
            [boxes1[..., :6], rad_pred_encoding, boxes1[..., 7:]], dim=-1)
        boxes2 = torch.cat([boxes2[..., :6], rad_tg_encoding, boxes2[..., 7:]],
                           dim=-1)
        return boxes1, boxes2

    @staticmethod
    def get_direction_target(reg_targets,
                             dir_offset=0,
215
                             dir_limit_offset=0.0,
twang's avatar
twang committed
216
217
218
219
220
221
                             num_bins=2,
                             one_hot=True):
        """Encode direction to 0 ~ num_bins-1.

        Args:
            reg_targets (torch.Tensor): Bbox regression targets.
222
223
224
225
226
227
228
            dir_offset (int, optional): Direction offset. Default to 0.
            dir_limit_offset (float, optional): Offset to set the direction
                range. Default to 0.0.
            num_bins (int, optional): Number of bins to divide 2*PI.
                Default to 2.
            one_hot (bool, optional): Whether to encode as one hot.
                Default to True.
twang's avatar
twang committed
229
230
231
232
233

        Returns:
            torch.Tensor: Encoded direction targets.
        """
        rot_gt = reg_targets[..., 6]
234
235
        offset_rot = limit_period(rot_gt - dir_offset, dir_limit_offset,
                                  2 * np.pi)
twang's avatar
twang committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        dir_cls_targets = torch.floor(offset_rot /
                                      (2 * np.pi / num_bins)).long()
        dir_cls_targets = torch.clamp(dir_cls_targets, min=0, max=num_bins - 1)
        if one_hot:
            dir_targets = torch.zeros(
                *list(dir_cls_targets.shape),
                num_bins,
                dtype=reg_targets.dtype,
                device=dir_cls_targets.device)
            dir_targets.scatter_(dir_cls_targets.unsqueeze(dim=-1).long(), 1.0)
            dir_cls_targets = dir_targets
        return dir_cls_targets

    @force_fp32(
        apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds', 'attr_preds',
                  'centernesses'))
    def loss(self,
             cls_scores,
             bbox_preds,
             dir_cls_preds,
             attr_preds,
             centernesses,
             gt_bboxes,
             gt_labels,
             gt_bboxes_3d,
             gt_labels_3d,
             centers2d,
             depths,
             attr_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute loss of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_points * num_classes.
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_points * bbox_code_size.
            dir_cls_preds (list[Tensor]): Box scores for direction class
                predictions on each scale level, each is a 4D-tensor,
                the channel number is num_points * 2. (bin = 2)
            attr_preds (list[Tensor]): Attribute scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_points * num_attrs.
            centernesses (list[Tensor]): Centerness for each scale level, each
                is a 4D-tensor, the channel number is num_points * 1.
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            gt_bboxes_3d (list[Tensor]): 3D boxes ground truth with shape of
                (num_gts, code_size).
            gt_labels_3d (list[Tensor]): same as gt_labels
            centers2d (list[Tensor]): 2D centers on the image with shape of
                (num_gts, 2).
            depths (list[Tensor]): Depth ground truth with shape of
                (num_gts, ).
            attr_labels (list[Tensor]): Attributes indices of each box.
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
297
            gt_bboxes_ignore (list[Tensor]): specify which bounding
twang's avatar
twang committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
                boxes can be ignored when computing the loss.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert len(cls_scores) == len(bbox_preds) == len(centernesses) == len(
            attr_preds)
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        all_level_points = self.get_points(featmap_sizes, bbox_preds[0].dtype,
                                           bbox_preds[0].device)
        labels_3d, bbox_targets_3d, centerness_targets, attr_targets = \
            self.get_targets(
                all_level_points, gt_bboxes, gt_labels, gt_bboxes_3d,
                gt_labels_3d, centers2d, depths, attr_labels)

        num_imgs = cls_scores[0].size(0)
        # flatten cls_scores, bbox_preds, dir_cls_preds and centerness
        flatten_cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
            for cls_score in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(-1, sum(self.group_reg_dims))
            for bbox_pred in bbox_preds
        ]
        flatten_dir_cls_preds = [
            dir_cls_pred.permute(0, 2, 3, 1).reshape(-1, 2)
            for dir_cls_pred in dir_cls_preds
        ]
        flatten_centerness = [
            centerness.permute(0, 2, 3, 1).reshape(-1)
            for centerness in centernesses
        ]
        flatten_cls_scores = torch.cat(flatten_cls_scores)
        flatten_bbox_preds = torch.cat(flatten_bbox_preds)
        flatten_dir_cls_preds = torch.cat(flatten_dir_cls_preds)
        flatten_centerness = torch.cat(flatten_centerness)
        flatten_labels_3d = torch.cat(labels_3d)
        flatten_bbox_targets_3d = torch.cat(bbox_targets_3d)
        flatten_centerness_targets = torch.cat(centerness_targets)

        # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
        bg_class_ind = self.num_classes
        pos_inds = ((flatten_labels_3d >= 0)
                    & (flatten_labels_3d < bg_class_ind)).nonzero().reshape(-1)
        num_pos = len(pos_inds)

        loss_cls = self.loss_cls(
            flatten_cls_scores,
            flatten_labels_3d,
            avg_factor=num_pos + num_imgs)  # avoid num_pos is 0

        pos_bbox_preds = flatten_bbox_preds[pos_inds]
        pos_dir_cls_preds = flatten_dir_cls_preds[pos_inds]
        pos_centerness = flatten_centerness[pos_inds]

        if self.pred_attrs:
            flatten_attr_preds = [
                attr_pred.permute(0, 2, 3, 1).reshape(-1, self.num_attrs)
                for attr_pred in attr_preds
            ]
            flatten_attr_preds = torch.cat(flatten_attr_preds)
            flatten_attr_targets = torch.cat(attr_targets)
            pos_attr_preds = flatten_attr_preds[pos_inds]

        if num_pos > 0:
            pos_bbox_targets_3d = flatten_bbox_targets_3d[pos_inds]
            pos_centerness_targets = flatten_centerness_targets[pos_inds]
            if self.pred_attrs:
                pos_attr_targets = flatten_attr_targets[pos_inds]
            bbox_weights = pos_centerness_targets.new_ones(
                len(pos_centerness_targets), sum(self.group_reg_dims))
            equal_weights = pos_centerness_targets.new_ones(
                pos_centerness_targets.shape)

            code_weight = self.train_cfg.get('code_weight', None)
            if code_weight:
                assert len(code_weight) == sum(self.group_reg_dims)
                bbox_weights = bbox_weights * bbox_weights.new_tensor(
                    code_weight)

            if self.use_direction_classifier:
                pos_dir_cls_targets = self.get_direction_target(
381
382
383
384
                    pos_bbox_targets_3d,
                    self.dir_offset,
                    self.dir_limit_offset,
                    one_hot=False)
twang's avatar
twang committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

            if self.diff_rad_by_sin:
                pos_bbox_preds, pos_bbox_targets_3d = self.add_sin_difference(
                    pos_bbox_preds, pos_bbox_targets_3d)

            loss_offset = self.loss_bbox(
                pos_bbox_preds[:, :2],
                pos_bbox_targets_3d[:, :2],
                weight=bbox_weights[:, :2],
                avg_factor=equal_weights.sum())
            loss_depth = self.loss_bbox(
                pos_bbox_preds[:, 2],
                pos_bbox_targets_3d[:, 2],
                weight=bbox_weights[:, 2],
                avg_factor=equal_weights.sum())
            loss_size = self.loss_bbox(
                pos_bbox_preds[:, 3:6],
                pos_bbox_targets_3d[:, 3:6],
                weight=bbox_weights[:, 3:6],
                avg_factor=equal_weights.sum())
            loss_rotsin = self.loss_bbox(
                pos_bbox_preds[:, 6],
                pos_bbox_targets_3d[:, 6],
                weight=bbox_weights[:, 6],
                avg_factor=equal_weights.sum())
            loss_velo = None
            if self.pred_velo:
                loss_velo = self.loss_bbox(
                    pos_bbox_preds[:, 7:9],
                    pos_bbox_targets_3d[:, 7:9],
                    weight=bbox_weights[:, 7:9],
                    avg_factor=equal_weights.sum())

            loss_centerness = self.loss_centerness(pos_centerness,
                                                   pos_centerness_targets)

            # direction classification loss
            loss_dir = None
            # TODO: add more check for use_direction_classifier
            if self.use_direction_classifier:
                loss_dir = self.loss_dir(
                    pos_dir_cls_preds,
                    pos_dir_cls_targets,
                    equal_weights,
                    avg_factor=equal_weights.sum())

            # attribute classification loss
            loss_attr = None
            if self.pred_attrs:
                loss_attr = self.loss_attr(
                    pos_attr_preds,
                    pos_attr_targets,
                    pos_centerness_targets,
                    avg_factor=pos_centerness_targets.sum())

        else:
            # need absolute due to possible negative delta x/y
            loss_offset = pos_bbox_preds[:, :2].sum()
            loss_depth = pos_bbox_preds[:, 2].sum()
            loss_size = pos_bbox_preds[:, 3:6].sum()
            loss_rotsin = pos_bbox_preds[:, 6].sum()
            loss_velo = None
            if self.pred_velo:
                loss_velo = pos_bbox_preds[:, 7:9].sum()
            loss_centerness = pos_centerness.sum()
            loss_dir = None
            if self.use_direction_classifier:
                loss_dir = pos_dir_cls_preds.sum()
            loss_attr = None
            if self.pred_attrs:
                loss_attr = pos_attr_preds.sum()

        loss_dict = dict(
            loss_cls=loss_cls,
            loss_offset=loss_offset,
            loss_depth=loss_depth,
            loss_size=loss_size,
            loss_rotsin=loss_rotsin,
            loss_centerness=loss_centerness)

        if loss_velo is not None:
            loss_dict['loss_velo'] = loss_velo

        if loss_dir is not None:
            loss_dict['loss_dir'] = loss_dir

        if loss_attr is not None:
            loss_dict['loss_attr'] = loss_attr

        return loss_dict

    @force_fp32(
        apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds', 'attr_preds',
                  'centernesses'))
    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   dir_cls_preds,
                   attr_preds,
                   centernesses,
                   img_metas,
                   cfg=None,
                   rescale=None):
        """Transform network output for a batch into bbox predictions.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_points * num_classes, H, W)
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_points * 4, H, W)
            dir_cls_preds (list[Tensor]): Box scores for direction class
                predictions on each scale level, each is a 4D-tensor,
                the channel number is num_points * 2. (bin = 2)
            attr_preds (list[Tensor]): Attribute scores for each scale level
                Has shape (N, num_points * num_attrs, H, W)
            centernesses (list[Tensor]): Centerness for each scale level with
                shape (N, num_points * 1, H, W)
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used
            rescale (bool): If True, return boxes in original image space

        Returns:
509
510
511
512
513
            list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is an (n, 5) tensor, where the first 4 columns
                are bounding box positions (tl_x, tl_y, br_x, br_y) and the
                5-th column is a score between 0 and 1. The second item is a
                (n,) tensor where each item is the predicted class label of
twang's avatar
twang committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
                the corresponding box.
        """
        assert len(cls_scores) == len(bbox_preds) == len(dir_cls_preds) == \
            len(centernesses) == len(attr_preds)
        num_levels = len(cls_scores)

        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        mlvl_points = self.get_points(featmap_sizes, bbox_preds[0].dtype,
                                      bbox_preds[0].device)
        result_list = []
        for img_id in range(len(img_metas)):
            cls_score_list = [
                cls_scores[i][img_id].detach() for i in range(num_levels)
            ]
            bbox_pred_list = [
                bbox_preds[i][img_id].detach() for i in range(num_levels)
            ]
            if self.use_direction_classifier:
                dir_cls_pred_list = [
                    dir_cls_preds[i][img_id].detach()
                    for i in range(num_levels)
                ]
            else:
                dir_cls_pred_list = [
                    cls_scores[i][img_id].new_full(
                        [2, *cls_scores[i][img_id].shape[1:]], 0).detach()
                    for i in range(num_levels)
                ]
            if self.pred_attrs:
                attr_pred_list = [
                    attr_preds[i][img_id].detach() for i in range(num_levels)
                ]
            else:
                attr_pred_list = [
                    cls_scores[i][img_id].new_full(
                        [self.num_attrs, *cls_scores[i][img_id].shape[1:]],
                        self.attr_background_label).detach()
                    for i in range(num_levels)
                ]
            centerness_pred_list = [
                centernesses[i][img_id].detach() for i in range(num_levels)
            ]
            input_meta = img_metas[img_id]
            det_bboxes = self._get_bboxes_single(
                cls_score_list, bbox_pred_list, dir_cls_pred_list,
                attr_pred_list, centerness_pred_list, mlvl_points, input_meta,
                cfg, rescale)
            result_list.append(det_bboxes)
        return result_list

    def _get_bboxes_single(self,
                           cls_scores,
                           bbox_preds,
                           dir_cls_preds,
                           attr_preds,
                           centernesses,
                           mlvl_points,
                           input_meta,
                           cfg,
                           rescale=False):
        """Transform outputs for a single batch item into bbox predictions.

        Args:
            cls_scores (list[Tensor]): Box scores for a single scale level
                Has shape (num_points * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for a single scale
                level with shape (num_points * bbox_code_size, H, W).
            dir_cls_preds (list[Tensor]): Box scores for direction class
582
                predictions on a single scale level with shape
twang's avatar
twang committed
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
                (num_points * 2, H, W)
            attr_preds (list[Tensor]): Attribute scores for each scale level
                Has shape (N, num_points * num_attrs, H, W)
            centernesses (list[Tensor]): Centerness for a single scale level
                with shape (num_points, H, W).
            mlvl_points (list[Tensor]): Box reference for a single scale level
                with shape (num_total_points, 2).
            input_meta (dict): Metadata of input image.
            cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.

        Returns:
            tuples[Tensor]: Predicted 3D boxes, scores, labels and attributes.
        """
598
        view = np.array(input_meta['cam2img'])
twang's avatar
twang committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
        scale_factor = input_meta['scale_factor']
        cfg = self.test_cfg if cfg is None else cfg
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_points)
        mlvl_centers2d = []
        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_dir_scores = []
        mlvl_attr_scores = []
        mlvl_centerness = []

        for cls_score, bbox_pred, dir_cls_pred, attr_pred, centerness, \
                points in zip(cls_scores, bbox_preds, dir_cls_preds,
                              attr_preds, centernesses, mlvl_points):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
            scores = cls_score.permute(1, 2, 0).reshape(
                -1, self.cls_out_channels).sigmoid()
            dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2)
            dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1]
            attr_pred = attr_pred.permute(1, 2, 0).reshape(-1, self.num_attrs)
            attr_score = torch.max(attr_pred, dim=-1)[1]
            centerness = centerness.permute(1, 2, 0).reshape(-1).sigmoid()

            bbox_pred = bbox_pred.permute(1, 2,
                                          0).reshape(-1,
                                                     sum(self.group_reg_dims))
            bbox_pred = bbox_pred[:, :self.bbox_code_size]
            nms_pre = cfg.get('nms_pre', -1)
            if nms_pre > 0 and scores.shape[0] > nms_pre:
                max_scores, _ = (scores * centerness[:, None]).max(dim=1)
                _, topk_inds = max_scores.topk(nms_pre)
                points = points[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                scores = scores[topk_inds, :]
                dir_cls_pred = dir_cls_pred[topk_inds, :]
                centerness = centerness[topk_inds]
                dir_cls_score = dir_cls_score[topk_inds]
                attr_score = attr_score[topk_inds]
            # change the offset to actual center predictions
            bbox_pred[:, :2] = points - bbox_pred[:, :2]
            if rescale:
                bbox_pred[:, :2] /= bbox_pred[:, :2].new_tensor(scale_factor)
            pred_center2d = bbox_pred[:, :3].clone()
641
            bbox_pred[:, :3] = points_img2cam(bbox_pred[:, :3], view)
twang's avatar
twang committed
642
643
644
645
646
647
648
649
650
651
652
653
            mlvl_centers2d.append(pred_center2d)
            mlvl_bboxes.append(bbox_pred)
            mlvl_scores.append(scores)
            mlvl_dir_scores.append(dir_cls_score)
            mlvl_attr_scores.append(attr_score)
            mlvl_centerness.append(centerness)

        mlvl_centers2d = torch.cat(mlvl_centers2d)
        mlvl_bboxes = torch.cat(mlvl_bboxes)
        mlvl_dir_scores = torch.cat(mlvl_dir_scores)

        # change local yaw to global yaw for 3D nms
Tai-Wang's avatar
Tai-Wang committed
654
655
        cam2img = mlvl_centers2d.new_zeros((4, 4))
        cam2img[:view.shape[0], :view.shape[1]] = \
twang's avatar
twang committed
656
            mlvl_centers2d.new_tensor(view)
Tai-Wang's avatar
Tai-Wang committed
657
658
659
660
        mlvl_bboxes = self.bbox_coder.decode_yaw(mlvl_bboxes, mlvl_centers2d,
                                                 mlvl_dir_scores,
                                                 self.dir_offset, cam2img)

twang's avatar
twang committed
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
        mlvl_bboxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d'](
            mlvl_bboxes, box_dim=self.bbox_code_size,
            origin=(0.5, 0.5, 0.5)).bev)

        mlvl_scores = torch.cat(mlvl_scores)
        padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
        # remind that we set FG labels to [0, num_class-1] since mmdet v2.0
        # BG cat_id: num_class
        mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)
        mlvl_attr_scores = torch.cat(mlvl_attr_scores)
        mlvl_centerness = torch.cat(mlvl_centerness)
        # no scale_factors in box3d_multiclass_nms
        # Then we multiply it from outside
        mlvl_nms_scores = mlvl_scores * mlvl_centerness[:, None]
        results = box3d_multiclass_nms(mlvl_bboxes, mlvl_bboxes_for_nms,
                                       mlvl_nms_scores, cfg.score_thr,
                                       cfg.max_per_img, cfg, mlvl_dir_scores,
                                       mlvl_attr_scores)
        bboxes, scores, labels, dir_scores, attrs = results
        attrs = attrs.to(labels.dtype)  # change data type to int
681
682
        bboxes = input_meta['box_type_3d'](
            bboxes, box_dim=self.bbox_code_size, origin=(0.5, 0.5, 0.5))
twang's avatar
twang committed
683
684
        # Note that the predictions use origin (0.5, 0.5, 0.5)
        # Due to the ground truth centers2d are the gravity center of objects
685
686
        # v0.10.0 fix inplace operation to the input tensor of cam_box3d
        # So here we also need to add origin=(0.5, 0.5, 0.5)
twang's avatar
twang committed
687
688
689
690
691
692
693
694
695
        if not self.pred_attrs:
            attrs = None

        return bboxes, scores, labels, attrs

    @staticmethod
    def pts2Dto3D(points, view):
        """
        Args:
696
            points (torch.Tensor): points in 2D images, [N, 3],
twang's avatar
twang committed
697
                3 corresponds with x, y in the image and depth.
698
            view (np.ndarray): camera intrinsic, [3, 3]
twang's avatar
twang committed
699
700

        Returns:
701
            torch.Tensor: points in 3D space. [N, 3],
twang's avatar
twang committed
702
703
                3 corresponds with x, y, z in 3D space.
        """
704
705
706
707
        warning.warn('DeprecationWarning: This static method has been moved '
                     'out of this class to mmdet3d/core. The function '
                     'pts2Dto3D will be deprecated.')

twang's avatar
twang committed
708
709
710
711
712
713
714
715
716
717
718
719
        assert view.shape[0] <= 4
        assert view.shape[1] <= 4
        assert points.shape[1] == 3

        points2D = points[:, :2]
        depths = points[:, 2].view(-1, 1)
        unnorm_points2D = torch.cat([points2D * depths, depths], dim=1)

        viewpad = torch.eye(4, dtype=points2D.dtype, device=points2D.device)
        viewpad[:view.shape[0], :view.shape[1]] = points2D.new_tensor(view)
        inv_viewpad = torch.inverse(viewpad).transpose(0, 1)

720
        # Do operation in homogeneous coordinates.
twang's avatar
twang committed
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
        nbr_points = unnorm_points2D.shape[0]
        homo_points2D = torch.cat(
            [unnorm_points2D,
             points2D.new_ones((nbr_points, 1))], dim=1)
        points3D = torch.mm(homo_points2D, inv_viewpad)[:, :3]

        return points3D

    def _get_points_single(self,
                           featmap_size,
                           stride,
                           dtype,
                           device,
                           flatten=False):
        """Get points according to feature map sizes."""
        y, x = super()._get_points_single(featmap_size, stride, dtype, device)
        points = torch.stack((x.reshape(-1) * stride, y.reshape(-1) * stride),
                             dim=-1) + stride // 2
        return points

    def get_targets(self, points, gt_bboxes_list, gt_labels_list,
                    gt_bboxes_3d_list, gt_labels_3d_list, centers2d_list,
                    depths_list, attr_labels_list):
        """Compute regression, classification and centerss targets for points
        in multiple images.

        Args:
            points (list[Tensor]): Points of each fpn level, each has shape
                (num_points, 2).
            gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image,
                each has shape (num_gt, 4).
            gt_labels_list (list[Tensor]): Ground truth labels of each box,
                each has shape (num_gt,).
            gt_bboxes_3d_list (list[Tensor]): 3D Ground truth bboxes of each
                image, each has shape (num_gt, bbox_code_size).
            gt_labels_3d_list (list[Tensor]): 3D Ground truth labels of each
                box, each has shape (num_gt,).
            centers2d_list (list[Tensor]): Projected 3D centers onto 2D image,
                each has shape (num_gt, 2).
            depths_list (list[Tensor]): Depth of projected 3D centers onto 2D
                image, each has shape (num_gt, 1).
            attr_labels_list (list[Tensor]): Attribute labels of each box,
                each has shape (num_gt,).

        Returns:
            tuple:
767
768
                concat_lvl_labels (list[Tensor]): Labels of each level.
                concat_lvl_bbox_targets (list[Tensor]): BBox targets of each
twang's avatar
twang committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
                    level.
        """
        assert len(points) == len(self.regress_ranges)
        num_levels = len(points)
        # expand regress ranges to align with points
        expanded_regress_ranges = [
            points[i].new_tensor(self.regress_ranges[i])[None].expand_as(
                points[i]) for i in range(num_levels)
        ]
        # concat all levels points and regress ranges
        concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0)
        concat_points = torch.cat(points, dim=0)

        # the number of points per img, per lvl
        num_points = [center.size(0) for center in points]

        if attr_labels_list is None:
            attr_labels_list = [
                gt_labels.new_full(gt_labels.shape, self.attr_background_label)
                for gt_labels in gt_labels_list
            ]

        # get labels and bbox_targets of each image
        _, _, labels_3d_list, bbox_targets_3d_list, centerness_targets_list, \
            attr_targets_list = multi_apply(
                self._get_target_single,
                gt_bboxes_list,
                gt_labels_list,
                gt_bboxes_3d_list,
                gt_labels_3d_list,
                centers2d_list,
                depths_list,
                attr_labels_list,
                points=concat_points,
                regress_ranges=concat_regress_ranges,
                num_points_per_lvl=num_points)

        # split to per img, per level
        labels_3d_list = [
            labels_3d.split(num_points, 0) for labels_3d in labels_3d_list
        ]
        bbox_targets_3d_list = [
            bbox_targets_3d.split(num_points, 0)
            for bbox_targets_3d in bbox_targets_3d_list
        ]
        centerness_targets_list = [
            centerness_targets.split(num_points, 0)
            for centerness_targets in centerness_targets_list
        ]
        attr_targets_list = [
            attr_targets.split(num_points, 0)
            for attr_targets in attr_targets_list
        ]

        # concat per level image
        concat_lvl_labels_3d = []
        concat_lvl_bbox_targets_3d = []
        concat_lvl_centerness_targets = []
        concat_lvl_attr_targets = []
        for i in range(num_levels):
            concat_lvl_labels_3d.append(
                torch.cat([labels[i] for labels in labels_3d_list]))
            concat_lvl_centerness_targets.append(
                torch.cat([
                    centerness_targets[i]
                    for centerness_targets in centerness_targets_list
                ]))
            bbox_targets_3d = torch.cat([
                bbox_targets_3d[i] for bbox_targets_3d in bbox_targets_3d_list
            ])
            concat_lvl_attr_targets.append(
                torch.cat(
                    [attr_targets[i] for attr_targets in attr_targets_list]))
            if self.norm_on_bbox:
                bbox_targets_3d[:, :
                                2] = bbox_targets_3d[:, :2] / self.strides[i]
            concat_lvl_bbox_targets_3d.append(bbox_targets_3d)
        return concat_lvl_labels_3d, concat_lvl_bbox_targets_3d, \
            concat_lvl_centerness_targets, concat_lvl_attr_targets

    def _get_target_single(self, gt_bboxes, gt_labels, gt_bboxes_3d,
                           gt_labels_3d, centers2d, depths, attr_labels,
                           points, regress_ranges, num_points_per_lvl):
        """Compute regression and classification targets for a single image."""
        num_points = points.size(0)
        num_gts = gt_labels.size(0)
        if not isinstance(gt_bboxes_3d, torch.Tensor):
            gt_bboxes_3d = gt_bboxes_3d.tensor.to(gt_bboxes.device)
        if num_gts == 0:
            return gt_labels.new_full((num_points,), self.background_label), \
                   gt_bboxes.new_zeros((num_points, 4)), \
                   gt_labels_3d.new_full(
                       (num_points,), self.background_label), \
                   gt_bboxes_3d.new_zeros((num_points, self.bbox_code_size)), \
                   gt_bboxes_3d.new_zeros((num_points,)), \
                   attr_labels.new_full(
                       (num_points,), self.attr_background_label)

867
868
869
870
        # change orientation to local yaw
        gt_bboxes_3d[..., 6] = -torch.atan2(
            gt_bboxes_3d[..., 0], gt_bboxes_3d[..., 2]) + gt_bboxes_3d[..., 6]

twang's avatar
twang committed
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
        areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
            gt_bboxes[:, 3] - gt_bboxes[:, 1])
        areas = areas[None].repeat(num_points, 1)
        regress_ranges = regress_ranges[:, None, :].expand(
            num_points, num_gts, 2)
        gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4)
        centers2d = centers2d[None].expand(num_points, num_gts, 2)
        gt_bboxes_3d = gt_bboxes_3d[None].expand(num_points, num_gts,
                                                 self.bbox_code_size)
        depths = depths[None, :, None].expand(num_points, num_gts, 1)
        xs, ys = points[:, 0], points[:, 1]
        xs = xs[:, None].expand(num_points, num_gts)
        ys = ys[:, None].expand(num_points, num_gts)

        delta_xs = (xs - centers2d[..., 0])[..., None]
        delta_ys = (ys - centers2d[..., 1])[..., None]
        bbox_targets_3d = torch.cat(
            (delta_xs, delta_ys, depths, gt_bboxes_3d[..., 3:]), dim=-1)

        left = xs - gt_bboxes[..., 0]
        right = gt_bboxes[..., 2] - xs
        top = ys - gt_bboxes[..., 1]
        bottom = gt_bboxes[..., 3] - ys
        bbox_targets = torch.stack((left, top, right, bottom), -1)

        assert self.center_sampling is True, 'Setting center_sampling to '\
            'False has not been implemented for FCOS3D.'
        # condition1: inside a `center bbox`
        radius = self.center_sample_radius
        center_xs = centers2d[..., 0]
        center_ys = centers2d[..., 1]
        center_gts = torch.zeros_like(gt_bboxes)
        stride = center_xs.new_zeros(center_xs.shape)

        # project the points on current lvl back to the `original` sizes
        lvl_begin = 0
        for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl):
            lvl_end = lvl_begin + num_points_lvl
            stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius
            lvl_begin = lvl_end

        center_gts[..., 0] = center_xs - stride
        center_gts[..., 1] = center_ys - stride
        center_gts[..., 2] = center_xs + stride
        center_gts[..., 3] = center_ys + stride

        cb_dist_left = xs - center_gts[..., 0]
        cb_dist_right = center_gts[..., 2] - xs
        cb_dist_top = ys - center_gts[..., 1]
        cb_dist_bottom = center_gts[..., 3] - ys
        center_bbox = torch.stack(
            (cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1)
        inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0

        # condition2: limit the regression range for each location
        max_regress_distance = bbox_targets.max(-1)[0]
        inside_regress_range = (
            (max_regress_distance >= regress_ranges[..., 0])
            & (max_regress_distance <= regress_ranges[..., 1]))

        # center-based criterion to deal with ambiguity
        dists = torch.sqrt(torch.sum(bbox_targets_3d[..., :2]**2, dim=-1))
        dists[inside_gt_bbox_mask == 0] = INF
        dists[inside_regress_range == 0] = INF
        min_dist, min_dist_inds = dists.min(dim=1)

        labels = gt_labels[min_dist_inds]
        labels_3d = gt_labels_3d[min_dist_inds]
        attr_labels = attr_labels[min_dist_inds]
        labels[min_dist == INF] = self.background_label  # set as BG
        labels_3d[min_dist == INF] = self.background_label  # set as BG
        attr_labels[min_dist == INF] = self.attr_background_label

        bbox_targets = bbox_targets[range(num_points), min_dist_inds]
        bbox_targets_3d = bbox_targets_3d[range(num_points), min_dist_inds]
        relative_dists = torch.sqrt(
            torch.sum(bbox_targets_3d[..., :2]**2,
                      dim=-1)) / (1.414 * stride[:, 0])
        # [N, 1] / [N, 1]
        centerness_targets = torch.exp(-self.centerness_alpha * relative_dists)

        return labels, bbox_targets, labels_3d, bbox_targets_3d, \
            centerness_targets, attr_labels