import numpy as np import os import pytest import tempfile import torch from mmcv.parallel import MMDataParallel from os.path import dirname, exists, join from mmdet3d.apis import (convert_SyncBN, inference_detector, init_detector, show_result_meshlab, single_gpu_test) from mmdet3d.core import Box3DMode from mmdet3d.core.bbox import DepthInstance3DBoxes, LiDARInstance3DBoxes from mmdet3d.datasets import build_dataloader, build_dataset from mmdet3d.models import build_detector def _get_config_directory(): """Find the predefined detector config directory.""" try: # Assume we are running in the source mmdetection3d repo repo_dpath = dirname(dirname(dirname(__file__))) except NameError: # For IPython development when this __file__ is not defined import mmdet3d repo_dpath = dirname(dirname(mmdet3d.__file__)) config_dpath = join(repo_dpath, 'configs') if not exists(config_dpath): raise Exception('Cannot find config path') return config_dpath def _get_config_module(fname): """Load a configuration as a python module.""" from mmcv import Config config_dpath = _get_config_directory() config_fpath = join(config_dpath, fname) config_mod = Config.fromfile(config_fpath) return config_mod def test_convert_SyncBN(): cfg = _get_config_module( 'pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py') model_cfg = cfg.model convert_SyncBN(model_cfg) assert model_cfg['pts_voxel_encoder']['norm_cfg']['type'] == 'BN1d' assert model_cfg['pts_backbone']['norm_cfg']['type'] == 'BN2d' assert model_cfg['pts_neck']['norm_cfg']['type'] == 'BN2d' def test_show_result_meshlab(): pcd = 'tests/data/nuscenes/samples/LIDAR_TOP/n015-2018-08-02-17-16-37+' \ '0800__LIDAR_TOP__1533201470948018.pcd.bin' box_3d = LiDARInstance3DBoxes( torch.tensor( [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]])) labels_3d = torch.tensor([0]) scores_3d = torch.tensor([0.5]) points = np.random.rand(100, 4) img_meta = dict( pts_filename=pcd, boxes_3d=box_3d, box_mode_3d=Box3DMode.LIDAR) data = dict(points=[[torch.tensor(points)]], img_metas=[[img_meta]]) result = [ dict( pts_bbox=dict( boxes_3d=box_3d, labels_3d=labels_3d, scores_3d=scores_3d)) ] tmp_dir = tempfile.TemporaryDirectory() temp_out_dir = tmp_dir.name out_dir, file_name = show_result_meshlab(data, result, temp_out_dir) expected_outfile_pred = file_name + '_pred.obj' expected_outfile_pts = file_name + '_points.obj' expected_outfile_pred_path = os.path.join(out_dir, file_name, expected_outfile_pred) expected_outfile_pts_path = os.path.join(out_dir, file_name, expected_outfile_pts) assert os.path.exists(expected_outfile_pred_path) assert os.path.exists(expected_outfile_pts_path) tmp_dir.cleanup() # test multi-modality show # Indoor scene pcd = 'tests/data/sunrgbd/points/000001.bin' filename = 'tests/data/sunrgbd/sunrgbd_trainval/image/000001.jpg' box_3d = DepthInstance3DBoxes( torch.tensor( [[-1.1580, 3.3041, -0.9961, 0.3829, 0.4647, 0.5574, 1.1213]])) img = np.random.randn(1, 3, 608, 832) K = np.array([[[529.5000, 0.0000, 365.0000], [0.0000, 529.5000, 265.0000], [0.0000, 0.0000, 1.0000]]]) Rt = torch.tensor([[[0.9980, 0.0058, -0.0634], [0.0058, 0.9835, 0.1808], [0.0634, -0.1808, 0.9815]]]) img_meta = dict( filename=filename, pcd_horizontal_flip=False, pcd_vertical_flip=False, box_mode_3d=Box3DMode.DEPTH, box_type_3d=DepthInstance3DBoxes, pcd_trans=np.array([0., 0., 0.]), pcd_scale_factor=1.0, pts_filename=pcd, transformation_3d_flow=['R', 'S', 'T']) calib = dict(K=K, Rt=Rt) data = dict( points=[[torch.tensor(points)]], img_metas=[[img_meta]], img=[img], calib=[calib]) result = [ dict( pts_bbox=dict( boxes_3d=box_3d, labels_3d=labels_3d, scores_3d=scores_3d)) ] tmp_dir = tempfile.TemporaryDirectory() temp_out_dir = tmp_dir.name out_dir, file_name = show_result_meshlab(data, result, temp_out_dir, 0.3) expected_outfile_pred = file_name + '_pred.obj' expected_outfile_pts = file_name + '_points.obj' expected_outfile_png = file_name + '_img.png' expected_outfile_proj = file_name + '_pred.png' expected_outfile_pred_path = os.path.join(out_dir, file_name, expected_outfile_pred) expected_outfile_pts_path = os.path.join(out_dir, file_name, expected_outfile_pts) expected_outfile_png_path = os.path.join(out_dir, file_name, expected_outfile_png) expected_outfile_proj_path = os.path.join(out_dir, file_name, expected_outfile_proj) assert os.path.exists(expected_outfile_pred_path) assert os.path.exists(expected_outfile_pts_path) assert os.path.exists(expected_outfile_png_path) assert os.path.exists(expected_outfile_proj_path) tmp_dir.cleanup() # outdoor scene pcd = 'tests/data/kitti/training/velodyne_reduced/000000.bin' filename = 'tests/data/kitti/training/image_2/000000.png' box_3d = LiDARInstance3DBoxes( torch.tensor( [[6.4495, -3.9097, -1.7409, 1.5063, 3.1819, 1.4716, 1.8782]])) img = np.random.randn(1, 3, 384, 1280) lidar2img = np.array( [[6.09695435e+02, -7.21421631e+02, -1.25125790e+00, -1.23041824e+02], [1.80384201e+02, 7.64479828e+00, -7.19651550e+02, -1.01016693e+02], [9.99945343e-01, 1.24365499e-04, 1.04513029e-02, -2.69386917e-01], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) img_meta = dict( filename=filename, pcd_horizontal_flip=False, pcd_vertical_flip=False, box_mode_3d=Box3DMode.LIDAR, box_type_3d=LiDARInstance3DBoxes, pcd_trans=np.array([0., 0., 0.]), pcd_scale_factor=1.0, pts_filename=pcd, lidar2img=lidar2img) data = dict( points=[[torch.tensor(points)]], img_metas=[[img_meta]], img=[img]) result = [ dict( pts_bbox=dict( boxes_3d=box_3d, labels_3d=labels_3d, scores_3d=scores_3d)) ] out_dir, file_name = show_result_meshlab(data, result, temp_out_dir, 0.1) tmp_dir = tempfile.TemporaryDirectory() temp_out_dir = tmp_dir.name out_dir, file_name = show_result_meshlab(data, result, temp_out_dir, 0.3) expected_outfile_pred = file_name + '_pred.obj' expected_outfile_pts = file_name + '_points.obj' expected_outfile_png = file_name + '_img.png' expected_outfile_proj = file_name + '_pred.png' expected_outfile_pred_path = os.path.join(out_dir, file_name, expected_outfile_pred) expected_outfile_pts_path = os.path.join(out_dir, file_name, expected_outfile_pts) expected_outfile_png_path = os.path.join(out_dir, file_name, expected_outfile_png) expected_outfile_proj_path = os.path.join(out_dir, file_name, expected_outfile_proj) assert os.path.exists(expected_outfile_pred_path) assert os.path.exists(expected_outfile_pts_path) assert os.path.exists(expected_outfile_png_path) assert os.path.exists(expected_outfile_proj_path) tmp_dir.cleanup() def test_inference_detector(): pcd = 'tests/data/kitti/training/velodyne_reduced/000000.bin' detector_cfg = 'configs/pointpillars/hv_pointpillars_secfpn_' \ '6x8_160e_kitti-3d-3class.py' detector = init_detector(detector_cfg, device='cpu') results = inference_detector(detector, pcd) bboxes_3d = results[0][0]['boxes_3d'] scores_3d = results[0][0]['scores_3d'] labels_3d = results[0][0]['labels_3d'] assert bboxes_3d.tensor.shape[0] >= 0 assert bboxes_3d.tensor.shape[1] == 7 assert scores_3d.shape[0] >= 0 assert labels_3d.shape[0] >= 0 def test_single_gpu_test(): if not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') cfg = _get_config_module('votenet/votenet_16x8_sunrgbd-3d-10class.py') cfg.model.train_cfg = None model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) dataset_cfg = cfg.data.test dataset_cfg.data_root = './tests/data/sunrgbd' dataset_cfg.ann_file = 'tests/data/sunrgbd/sunrgbd_infos.pkl' dataset = build_dataset(dataset_cfg) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=False, shuffle=False) model = MMDataParallel(model, device_ids=[0]) results = single_gpu_test(model, data_loader) bboxes_3d = results[0]['boxes_3d'] scores_3d = results[0]['scores_3d'] labels_3d = results[0]['labels_3d'] assert bboxes_3d.tensor.shape[0] >= 0 assert bboxes_3d.tensor.shape[1] == 7 assert scores_3d.shape[0] >= 0 assert labels_3d.shape[0] >= 0