local_visualizer.py 43.1 KB
Newer Older
ZCMax's avatar
ZCMax committed
1
2
# Copyright (c) OpenMMLab. All rights reserved.
import copy
3
4
5
import math
import time
from typing import List, Optional, Sequence, Tuple, Union
ZCMax's avatar
ZCMax committed
6

7
import matplotlib.pyplot as plt
ZCMax's avatar
ZCMax committed
8
9
import mmcv
import numpy as np
10
11
12
from matplotlib.collections import PatchCollection
from matplotlib.patches import PathPatch
from matplotlib.path import Path
13
from mmdet.visualization import DetLocalVisualizer, get_palette
ZCMax's avatar
ZCMax committed
14
from mmengine.dist import master_only
15
from mmengine.structures import InstanceData
16
from mmengine.visualization import Visualizer as MMENGINE_Visualizer
17
18
from mmengine.visualization.utils import (check_type, color_val_matplotlib,
                                          tensor2ndarray)
ZCMax's avatar
ZCMax committed
19
20
from torch import Tensor

21
from mmdet3d.registry import VISUALIZERS
22
23
24
25
26
from mmdet3d.structures import (BaseInstance3DBoxes, Box3DMode,
                                CameraInstance3DBoxes, Coord3DMode,
                                DepthInstance3DBoxes, Det3DDataSample,
                                LiDARInstance3DBoxes, PointData,
                                points_cam2img)
27
28
from .vis_utils import (proj_camera_bbox3d_to_img, proj_depth_bbox3d_to_img,
                        proj_lidar_bbox3d_to_img, to_depth_mode)
zhangshilong's avatar
zhangshilong committed
29

ZCMax's avatar
ZCMax committed
30
31
32
try:
    import open3d as o3d
    from open3d import geometry
33
    from open3d.visualization import Visualizer
ZCMax's avatar
ZCMax committed
34
except ImportError:
35
    o3d = geometry = Visualizer = None
ZCMax's avatar
ZCMax committed
36
37
38
39
40
41
42
43
44
45


@VISUALIZERS.register_module()
class Det3DLocalVisualizer(DetLocalVisualizer):
    """MMDetection3D Local Visualizer.

    - 3D detection and segmentation drawing methods

      - draw_bboxes_3d: draw 3D bounding boxes on point clouds
      - draw_proj_bboxes_3d: draw projected 3D bounding boxes on image
zhangshilong's avatar
zhangshilong committed
46
      - draw_seg_mask: draw segmentation mask via per-point colorization
ZCMax's avatar
ZCMax committed
47
48
49

    Args:
        name (str): Name of the instance. Defaults to 'visualizer'.
50
51
52
        points (np.ndarray, optional): Points to visualize with shape (N, 3+C).
            Defaults to None.
        image (np.ndarray, optional): The origin image to draw. The format
ZCMax's avatar
ZCMax committed
53
            should be RGB. Defaults to None.
54
55
56
        pcd_mode (int): The point cloud mode (coordinates): 0 represents LiDAR,
            1 represents CAMERA, 2 represents Depth. Defaults to 0.
        vis_backends (List[dict], optional): Visual backend config list.
ZCMax's avatar
ZCMax committed
57
58
59
60
            Defaults to None.
        save_dir (str, optional): Save file dir for all storage backends.
            If it is None, the backend storage will not save any data.
            Defaults to None.
61
62
63
64
65
66
67
        bbox_color (str or Tuple[int], optional): Color of bbox lines.
            The tuple of color should be in BGR order. Defaults to None.
        text_color (str or Tuple[int]): Color of texts. The tuple of color
            should be in BGR order. Defaults to (200, 200, 200).
        mask_color (str or Tuple[int], optional): Color of masks. The tuple of
            color should be in BGR order. Defaults to None.
        line_width (int or float): The linewidth of lines. Defaults to 3.
68
        frame_cfg (dict): The coordinate frame config while Open3D
zhangshilong's avatar
zhangshilong committed
69
70
            visualization initialization.
            Defaults to dict(size=1, origin=[0, 0, 0]).
71
72
        alpha (int or float): The transparency of bboxes or mask.
            Defaults to 0.8.
73
74
        multi_imgs_col (int): The number of columns in arrangement when showing
            multi-view images.
ZCMax's avatar
ZCMax committed
75
76
77
78

    Examples:
        >>> import numpy as np
        >>> import torch
79
        >>> from mmengine.structures import InstanceData
80
81
        >>> from mmdet3d.structures import (DepthInstance3DBoxes
        ...                                 Det3DDataSample)
zhangshilong's avatar
zhangshilong committed
82
        >>> from mmdet3d.visualization import Det3DLocalVisualizer
ZCMax's avatar
ZCMax committed
83
84

        >>> det3d_local_visualizer = Det3DLocalVisualizer()
85
86
        >>> image = np.random.randint(0, 256, size=(10, 12, 3)).astype('uint8')
        >>> points = np.random.rand(1000, 3)
ZCMax's avatar
ZCMax committed
87
        >>> gt_instances_3d = InstanceData()
88
89
        >>> gt_instances_3d.bboxes_3d = DepthInstance3DBoxes(
        ...     torch.rand((5, 7)))
zhangshilong's avatar
zhangshilong committed
90
        >>> gt_instances_3d.labels_3d = torch.randint(0, 2, (5,))
ZCMax's avatar
ZCMax committed
91
92
        >>> gt_det3d_data_sample = Det3DDataSample()
        >>> gt_det3d_data_sample.gt_instances_3d = gt_instances_3d
zhangshilong's avatar
zhangshilong committed
93
94
        >>> data_input = dict(img=image, points=points)
        >>> det3d_local_visualizer.add_datasample('3D Scene', data_input,
95
96
97
98
99
100
101
102
103
104
105
106
107
        ...                                       gt_det3d_data_sample)

        >>> from mmdet3d.structures import PointData
        >>> det3d_local_visualizer = Det3DLocalVisualizer()
        >>> points = np.random.rand(1000, 3)
        >>> gt_pts_seg = PointData()
        >>> gt_pts_seg.pts_semantic_mask = torch.randint(0, 10, (1000, ))
        >>> gt_det3d_data_sample = Det3DDataSample()
        >>> gt_det3d_data_sample.gt_pts_seg = gt_pts_seg
        >>> data_input = dict(points=points)
        >>> det3d_local_visualizer.add_datasample('3D Scene', data_input,
        ...                                       gt_det3d_data_sample,
        ...                                       vis_task='lidar_seg')
ZCMax's avatar
ZCMax committed
108
109
    """

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    def __init__(
        self,
        name: str = 'visualizer',
        points: Optional[np.ndarray] = None,
        image: Optional[np.ndarray] = None,
        pcd_mode: int = 0,
        vis_backends: Optional[List[dict]] = None,
        save_dir: Optional[str] = None,
        bbox_color: Optional[Union[str, Tuple[int]]] = None,
        text_color: Union[str, Tuple[int]] = (200, 200, 200),
        mask_color: Optional[Union[str, Tuple[int]]] = None,
        line_width: Union[int, float] = 3,
        frame_cfg: dict = dict(size=1, origin=[0, 0, 0]),
        alpha: Union[int, float] = 0.8,
        multi_imgs_col: int = 3,
        fig_show_cfg: dict = dict(figsize=(18, 12))
    ) -> None:
ZCMax's avatar
ZCMax committed
127
128
129
130
131
132
133
134
135
136
        super().__init__(
            name=name,
            image=image,
            vis_backends=vis_backends,
            save_dir=save_dir,
            bbox_color=bbox_color,
            text_color=text_color,
            mask_color=mask_color,
            line_width=line_width,
            alpha=alpha)
137
138
139
        if points is not None:
            self.set_points(points, pcd_mode=pcd_mode, frame_cfg=frame_cfg)
        self.pts_seg_num = 0
140
141
        self.multi_imgs_col = multi_imgs_col
        self.fig_show_cfg.update(fig_show_cfg)
ZCMax's avatar
ZCMax committed
142

143
144
145
146
147
148
149
150
    def _clear_o3d_vis(self) -> None:
        """Clear open3d vis."""

        if hasattr(self, 'o3d_vis'):
            del self.o3d_vis
            del self.pcd
            del self.points_colors

151
    def _initialize_o3d_vis(self, frame_cfg: dict) -> Visualizer:
152
        """Initialize open3d vis according to frame_cfg.
ZCMax's avatar
ZCMax committed
153
154

        Args:
155
156
            frame_cfg (dict): The config to create coordinate frame in open3d
                vis.
ZCMax's avatar
ZCMax committed
157
158

        Returns:
159
            :obj:`o3d.visualization.Visualizer`: Created open3d vis.
ZCMax's avatar
ZCMax committed
160
        """
161
162
163
        if o3d is None or geometry is None:
            raise ImportError(
                'Please run "pip install open3d" to install open3d first.')
ZCMax's avatar
ZCMax committed
164
165
166
        o3d_vis = o3d.visualization.Visualizer()
        o3d_vis.create_window()
        # create coordinate frame
167
        mesh_frame = geometry.TriangleMesh.create_coordinate_frame(**frame_cfg)
ZCMax's avatar
ZCMax committed
168
169
170
171
172
173
        o3d_vis.add_geometry(mesh_frame)
        return o3d_vis

    @master_only
    def set_points(self,
                   points: np.ndarray,
174
                   pcd_mode: int = 0,
175
                   vis_mode: str = 'replace',
176
                   frame_cfg: dict = dict(size=1, origin=[0, 0, 0]),
177
                   points_color: Tuple[float] = (0.8, 0.8, 0.8),
ZCMax's avatar
ZCMax committed
178
179
                   points_size: int = 2,
                   mode: str = 'xyz') -> None:
180
        """Set the point cloud to draw.
ZCMax's avatar
ZCMax committed
181
182

        Args:
183
184
185
            points (np.ndarray): Points to visualize with shape (N, 3+C).
            pcd_mode (int): The point cloud mode (coordinates): 0 represents
                LiDAR, 1 represents CAMERA, 2 represents Depth. Defaults to 0.
186
            vis_mode (str): The visualization mode in Open3D:
187
188
189
190
191

                - 'replace': Replace the existing point cloud with input point
                  cloud.
                - 'add': Add input point cloud into existing point cloud.

192
                Defaults to 'replace'.
193
            frame_cfg (dict): The coordinate frame config for Open3D
194
195
                visualization initialization.
                Defaults to dict(size=1, origin=[0, 0, 0]).
196
            points_color (Tuple[float]): The color of points.
197
                Defaults to (1, 1, 1).
198
199
200
201
            points_size (int): The size of points to show on visualizer.
                Defaults to 2.
            mode (str): Indicate type of the input points, available mode
                ['xyz', 'xyzrgb']. Defaults to 'xyz'.
ZCMax's avatar
ZCMax committed
202
203
        """
        assert points is not None
204
        assert vis_mode in ('replace', 'add')
ZCMax's avatar
ZCMax committed
205
206
        check_type('points', points, np.ndarray)

207
208
209
        if not hasattr(self, 'o3d_vis'):
            self.o3d_vis = self._initialize_o3d_vis(frame_cfg)

210
211
212
213
        # for now we convert points into depth mode for visualization
        if pcd_mode != Coord3DMode.DEPTH:
            points = Coord3DMode.convert(points, pcd_mode, Coord3DMode.DEPTH)

214
        if hasattr(self, 'pcd') and vis_mode != 'add':
ZCMax's avatar
ZCMax committed
215
216
217
            self.o3d_vis.remove_geometry(self.pcd)

        # set points size in Open3D
218
219
220
221
        render_option = self.o3d_vis.get_render_option()
        if render_option is not None:
            render_option.point_size = points_size
            render_option.background_color = np.asarray([0, 0, 0])
ZCMax's avatar
ZCMax committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

        points = points.copy()
        pcd = geometry.PointCloud()
        if mode == 'xyz':
            pcd.points = o3d.utility.Vector3dVector(points[:, :3])
            points_colors = np.tile(
                np.array(points_color), (points.shape[0], 1))
        elif mode == 'xyzrgb':
            pcd.points = o3d.utility.Vector3dVector(points[:, :3])
            points_colors = points[:, 3:6]
            # normalize to [0, 1] for Open3D drawing
            if not ((points_colors >= 0.0) & (points_colors <= 1.0)).all():
                points_colors /= 255.0
        else:
            raise NotImplementedError

        pcd.colors = o3d.utility.Vector3dVector(points_colors)
        self.o3d_vis.add_geometry(pcd)
        self.pcd = pcd
241
        self.points_colors = points_colors
ZCMax's avatar
ZCMax committed
242
243
244
245
246

    # TODO: assign 3D Box color according to pred / GT labels
    # We draw GT / pred bboxes on the same point cloud scenes
    # for better detection performance comparison
    def draw_bboxes_3d(self,
247
                       bboxes_3d: BaseInstance3DBoxes,
248
249
250
251
252
                       bbox_color: Tuple[float] = (0, 1, 0),
                       points_in_box_color: Tuple[float] = (1, 0, 0),
                       rot_axis: int = 2,
                       center_mode: str = 'lidar_bottom',
                       mode: str = 'xyz') -> None:
ZCMax's avatar
ZCMax committed
253
254
255
256
        """Draw bbox on visualizer and change the color of points inside
        bbox3d.

        Args:
257
258
259
260
261
262
263
264
265
266
267
268
            bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bbox
                (x, y, z, x_size, y_size, z_size, yaw) to visualize.
            bbox_color (Tuple[float]): The color of 3D bboxes.
                Defaults to (0, 1, 0).
            points_in_box_color (Tuple[float]): The color of points inside 3D
                bboxes. Defaults to (1, 0, 0).
            rot_axis (int): Rotation axis of 3D bboxes. Defaults to 2.
            center_mode (str): Indicates the center of bbox is bottom center or
                gravity center. Available mode
                ['lidar_bottom', 'camera_bottom']. Defaults to 'lidar_bottom'.
            mode (str): Indicates the type of input points, available mode
                ['xyz', 'xyzrgb']. Defaults to 'xyz'.
ZCMax's avatar
ZCMax committed
269
270
271
        """
        # Before visualizing the 3D Boxes in point cloud scene
        # we need to convert the boxes to Depth mode
272
273
274
275
        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)

        if not isinstance(bboxes_3d, DepthInstance3DBoxes):
            bboxes_3d = bboxes_3d.convert_to(Box3DMode.DEPTH)
ZCMax's avatar
ZCMax committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

        # convert bboxes to numpy dtype
        bboxes_3d = tensor2ndarray(bboxes_3d.tensor)

        in_box_color = np.array(points_in_box_color)

        for i in range(len(bboxes_3d)):
            center = bboxes_3d[i, 0:3]
            dim = bboxes_3d[i, 3:6]
            yaw = np.zeros(3)
            yaw[rot_axis] = bboxes_3d[i, 6]
            rot_mat = geometry.get_rotation_matrix_from_xyz(yaw)

            if center_mode == 'lidar_bottom':
                # bottom center to gravity center
                center[rot_axis] += dim[rot_axis] / 2
            elif center_mode == 'camera_bottom':
                # bottom center to gravity center
                center[rot_axis] -= dim[rot_axis] / 2
            box3d = geometry.OrientedBoundingBox(center, rot_mat, dim)

            line_set = geometry.LineSet.create_from_oriented_bounding_box(
                box3d)
299
            line_set.paint_uniform_color(np.array(bbox_color[i]) / 255.)
ZCMax's avatar
ZCMax committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
            # draw bboxes on visualizer
            self.o3d_vis.add_geometry(line_set)

            # change the color of points which are in box
            if self.pcd is not None and mode == 'xyz':
                indices = box3d.get_point_indices_within_bounding_box(
                    self.pcd.points)
                self.points_colors[indices] = in_box_color

        # update points colors
        if self.pcd is not None:
            self.pcd.colors = o3d.utility.Vector3dVector(self.points_colors)
            self.o3d_vis.update_geometry(self.pcd)

314
315
    def set_bev_image(self,
                      bev_image: Optional[np.ndarray] = None,
316
                      bev_shape: int = 900) -> None:
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
        """Set the bev image to draw.

        Args:
            bev_image (np.ndarray, optional): The bev image to draw.
                Defaults to None.
            bev_shape (int): The bev image shape. Defaults to 900.
        """
        if bev_image is None:
            bev_image = np.zeros((bev_shape, bev_shape, 3), np.uint8)

        self._image = bev_image
        self.width, self.height = bev_image.shape[1], bev_image.shape[0]
        self._default_font_size = max(
            np.sqrt(self.height * self.width) // 90, 10)
        self.ax_save.cla()
        self.ax_save.axis(False)
        self.ax_save.imshow(bev_image, origin='lower')
        # plot camera view range
        x1 = np.linspace(0, self.width / 2)
        x2 = np.linspace(self.width / 2, self.width)
        self.ax_save.plot(
            x1,
            self.width / 2 - x1,
            ls='--',
            color='grey',
            linewidth=1,
            alpha=0.5)
        self.ax_save.plot(
            x2,
            x2 - self.width / 2,
            ls='--',
            color='grey',
            linewidth=1,
            alpha=0.5)
        self.ax_save.plot(
            self.width / 2,
            0,
            marker='+',
            markersize=16,
            markeredgecolor='red')

    # TODO: Support bev point cloud visualization
    @master_only
    def draw_bev_bboxes(self,
                        bboxes_3d: BaseInstance3DBoxes,
                        scale: int = 15,
363
364
                        edge_colors: Union[str, Tuple[int],
                                           List[Union[str, Tuple[int]]]] = 'o',
365
                        line_styles: Union[str, List[str]] = '-',
366
367
368
369
370
371
                        line_widths: Union[int, float, List[Union[int,
                                                                  float]]] = 1,
                        face_colors: Union[str, Tuple[int],
                                           List[Union[str,
                                                      Tuple[int]]]] = 'none',
                        alpha: Union[int, float] = 1) -> MMENGINE_Visualizer:
372
373
374
        """Draw projected 3D boxes on the image.

        Args:
375
376
            bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bbox
                (x, y, z, x_size, y_size, z_size, yaw) to visualize.
377
378
            scale (dict): Value to scale the bev bboxes for better
                visualization. Defaults to 15.
379
380
            edge_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The colors of bboxes. ``colors`` can have the same length with
381
382
383
384
                lines or just single value. If ``colors`` is single value, all
                the lines will have the same colors. Refer to `matplotlib.
                colors` for full list of formats that are accepted.
                Defaults to 'o'.
385
386
387
388
            line_styles (str or List[str]): The linestyle of lines.
                ``line_styles`` can have the same length with texts or just
                single value. If ``line_styles`` is single value, all the lines
                will have the same linestyle. Reference to
389
390
                https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
                for more details. Defaults to '-'.
391
392
393
394
395
396
397
            line_widths (int or float or List[int or float]): The linewidth of
                lines. ``line_widths`` can have the same length with lines or
                just single value. If ``line_widths`` is single value, all the
                lines will have the same linewidth. Defaults to 2.
            face_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The face colors. Defaults to 'none'.
            alpha (int or float): The transparency of bboxes. Defaults to 1.
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        """

        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)
        bev_bboxes = tensor2ndarray(bboxes_3d.bev)
        # scale the bev bboxes for better visualization
        bev_bboxes[:, :4] *= scale
        ctr, w, h, theta = np.split(bev_bboxes, [2, 3, 4], axis=-1)
        cos_value, sin_value = np.cos(theta), np.sin(theta)
        vec1 = np.concatenate([w / 2 * cos_value, w / 2 * sin_value], axis=-1)
        vec2 = np.concatenate([-h / 2 * sin_value, h / 2 * cos_value], axis=-1)
        pt1 = ctr + vec1 + vec2
        pt2 = ctr + vec1 - vec2
        pt3 = ctr - vec1 - vec2
        pt4 = ctr - vec1 + vec2
        poly = np.stack([pt1, pt2, pt3, pt4], axis=-2)
        # move the object along x-axis
        poly[:, :, 0] += self.width / 2
        poly = [p for p in poly]
        return self.draw_polygons(
            poly,
            alpha=alpha,
            edge_colors=edge_colors,
            line_styles=line_styles,
            line_widths=line_widths,
            face_colors=face_colors)

    @master_only
425
426
427
    def draw_points_on_image(self,
                             points: Union[np.ndarray, Tensor],
                             pts2img: np.ndarray,
428
429
                             sizes: Union[np.ndarray, int] = 3,
                             max_depth: Optional[float] = None) -> None:
430
431
432
        """Draw projected points on the image.

        Args:
433
434
435
436
            points (np.ndarray or Tensor): Points to draw.
            pts2img (np.ndarray): The transformation matrix from the coordinate
                of point cloud to image plane.
            sizes (np.ndarray or int): The marker size. Defaults to 10.
437
438
            max_depth (float): The max depth in the color map. Defaults to
                None.
439
440
441
442
443
444
        """
        check_type('points', points, (np.ndarray, Tensor))
        points = tensor2ndarray(points)
        assert self._image is not None, 'Please set image using `set_image`'
        projected_points = points_cam2img(points, pts2img, with_depth=True)
        depths = projected_points[:, 2]
445
446
447
448
        # Show depth adaptively consideing different scenes
        if max_depth is None:
            max_depth = depths.max()
        colors = (depths % max_depth) / max_depth
449
450
451
452
453
454
455
456
        # use colormap to obtain the render color
        color_map = plt.get_cmap('jet')
        self.ax_save.scatter(
            projected_points[:, 0],
            projected_points[:, 1],
            c=colors,
            cmap=color_map,
            s=sizes,
457
            alpha=0.7,
458
459
            edgecolors='none')

460
    # TODO: set bbox color according to palette
461
    @master_only
462
463
464
465
466
467
468
469
470
471
    def draw_proj_bboxes_3d(
            self,
            bboxes_3d: BaseInstance3DBoxes,
            input_meta: dict,
            edge_colors: Union[str, Tuple[int],
                               List[Union[str, Tuple[int]]]] = 'royalblue',
            line_styles: Union[str, List[str]] = '-',
            line_widths: Union[int, float, List[Union[int, float]]] = 2,
            face_colors: Union[str, Tuple[int],
                               List[Union[str, Tuple[int]]]] = 'royalblue',
472
473
            alpha: Union[int, float] = 0.4,
            img_size: Optional[Tuple] = None):
ZCMax's avatar
ZCMax committed
474
475
476
        """Draw projected 3D boxes on the image.

        Args:
477
478
            bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bbox
                (x, y, z, x_size, y_size, z_size, yaw) to visualize.
ZCMax's avatar
ZCMax committed
479
            input_meta (dict): Input meta information.
480
481
            edge_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The colors of bboxes. ``colors`` can have the same length with
482
483
484
485
                lines or just single value. If ``colors`` is single value, all
                the lines will have the same colors. Refer to `matplotlib.
                colors` for full list of formats that are accepted.
                Defaults to 'royalblue'.
486
487
488
489
            line_styles (str or List[str]): The linestyle of lines.
                ``line_styles`` can have the same length with texts or just
                single value. If ``line_styles`` is single value, all the lines
                will have the same linestyle. Reference to
490
491
                https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
                for more details. Defaults to '-'.
492
493
494
495
496
497
498
            line_widths (int or float or List[int or float]): The linewidth of
                lines. ``line_widths`` can have the same length with lines or
                just single value. If ``line_widths`` is single value, all the
                lines will have the same linewidth. Defaults to 2.
            face_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The face colors. Defaults to 'royalblue'.
            alpha (int or float): The transparency of bboxes. Defaults to 0.4.
499
            img_size (tuple, optional): The size (w, h) of the image.
ZCMax's avatar
ZCMax committed
500
501
502
503
        """

        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)

504
        if isinstance(bboxes_3d, DepthInstance3DBoxes):
ZCMax's avatar
ZCMax committed
505
            proj_bbox3d_to_img = proj_depth_bbox3d_to_img
506
        elif isinstance(bboxes_3d, LiDARInstance3DBoxes):
ZCMax's avatar
ZCMax committed
507
            proj_bbox3d_to_img = proj_lidar_bbox3d_to_img
508
        elif isinstance(bboxes_3d, CameraInstance3DBoxes):
ZCMax's avatar
ZCMax committed
509
510
            proj_bbox3d_to_img = proj_camera_bbox3d_to_img
        else:
511
            raise NotImplementedError('unsupported box type!')
ZCMax's avatar
ZCMax committed
512

513
514
        edge_colors_norm = color_val_matplotlib(edge_colors)

515
        corners_2d = proj_bbox3d_to_img(bboxes_3d, input_meta)
516
517
518
519
520
521
522
523
        if img_size is not None:
            # Filter out the bbox where half of stuff is outside the image.
            # This is for the visualization of multi-view image.
            valid_point_idx = (corners_2d[..., 0] >= 0) & \
                        (corners_2d[..., 0] <= img_size[0]) & \
                        (corners_2d[..., 1] >= 0) & (corners_2d[..., 1] <= img_size[1])  # noqa: E501
            valid_bbox_idx = valid_point_idx.sum(axis=-1) >= 4
            corners_2d = corners_2d[valid_bbox_idx]
524
525
526
527
528
529
530
531
            filter_edge_colors = []
            filter_edge_colors_norm = []
            for i, color in enumerate(edge_colors):
                if valid_bbox_idx[i]:
                    filter_edge_colors.append(color)
                    filter_edge_colors_norm.append(edge_colors_norm[i])
            edge_colors = filter_edge_colors
            edge_colors_norm = filter_edge_colors_norm
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

        lines_verts_idx = [0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 5, 1, 2, 6]
        lines_verts = corners_2d[:, lines_verts_idx, :]
        front_polys = corners_2d[:, 4:, :]
        codes = [Path.LINETO] * lines_verts.shape[1]
        codes[0] = Path.MOVETO
        pathpatches = []
        for i in range(len(corners_2d)):
            verts = lines_verts[i]
            pth = Path(verts, codes)
            pathpatches.append(PathPatch(pth))

        p = PatchCollection(
            pathpatches,
            facecolors='none',
547
            edgecolors=edge_colors_norm,
548
549
550
551
552
553
554
555
556
557
558
559
560
            linewidths=line_widths,
            linestyles=line_styles)

        self.ax_save.add_collection(p)

        # draw a mask on the front of project bboxes
        front_polys = [front_poly for front_poly in front_polys]
        return self.draw_polygons(
            front_polys,
            alpha=alpha,
            edge_colors=edge_colors,
            line_styles=line_styles,
            line_widths=line_widths,
561
            face_colors=edge_colors)
ZCMax's avatar
ZCMax committed
562

563
    @master_only
564
    def draw_seg_mask(self, seg_mask_colors: np.ndarray) -> None:
ZCMax's avatar
ZCMax committed
565
566
567
        """Add segmentation mask to visualizer via per-point colorization.

        Args:
568
569
570
            seg_mask_colors (np.ndarray): The segmentation mask with shape
                (N, 6), whose first 3 dims are point coordinates and last 3
                dims are converted colors.
ZCMax's avatar
ZCMax committed
571
572
573
574
        """
        # we can't draw the colors on existing points
        # in case gt and pred mask would overlap
        # instead we set a large offset along x-axis for each seg mask
575
        self.pts_seg_num += 1
ZCMax's avatar
ZCMax committed
576
        offset = (np.array(self.pcd.points).max(0) -
577
                  np.array(self.pcd.points).min(0))[0] * 1.2 * self.pts_seg_num
ZCMax's avatar
ZCMax committed
578
579
580
581
582
        mesh_frame = geometry.TriangleMesh.create_coordinate_frame(
            size=1, origin=[offset, 0, 0])  # create coordinate frame for seg
        self.o3d_vis.add_geometry(mesh_frame)
        seg_points = copy.deepcopy(seg_mask_colors)
        seg_points[:, 0] += offset
583
        self.set_points(seg_points, pcd_mode=2, vis_mode='add', mode='xyzrgb')
ZCMax's avatar
ZCMax committed
584

585
586
587
588
589
590
    def _draw_instances_3d(self,
                           data_input: dict,
                           instances: InstanceData,
                           input_meta: dict,
                           vis_task: str,
                           palette: Optional[List[tuple]] = None) -> dict:
ZCMax's avatar
ZCMax committed
591
592
593
594
        """Draw 3D instances of GT or prediction.

        Args:
            data_input (dict): The input dict to draw.
595
596
597
598
599
600
601
            instances (:obj:`InstanceData`): Data structure for instance-level
                annotations or predictions.
            input_meta (dict): Meta information.
            vis_task (str): Visualization task, it includes: 'lidar_det',
                'multi-modality_det', 'mono_det'.
            palette (List[tuple], optional): Palette information corresponding
                to the category. Defaults to None.
ZCMax's avatar
ZCMax committed
602
603

        Returns:
604
            dict: The drawn point cloud and image whose channel is RGB.
ZCMax's avatar
ZCMax committed
605
606
        """

607
608
609
610
        # Only visualize when there is at least one instance
        if not len(instances) > 0:
            return None

ZCMax's avatar
ZCMax committed
611
        bboxes_3d = instances.bboxes_3d  # BaseInstance3DBoxes
612
        labels_3d = instances.labels_3d
ZCMax's avatar
ZCMax committed
613

614
        data_3d = dict()
ZCMax's avatar
ZCMax committed
615

616
        if vis_task in ['lidar_det', 'multi-modality_det']:
ZCMax's avatar
ZCMax committed
617
618
619
620
621
622
623
624
625
626
            assert 'points' in data_input
            points = data_input['points']
            check_type('points', points, (np.ndarray, Tensor))
            points = tensor2ndarray(points)

            if not isinstance(bboxes_3d, DepthInstance3DBoxes):
                points, bboxes_3d_depth = to_depth_mode(points, bboxes_3d)
            else:
                bboxes_3d_depth = bboxes_3d.clone()

627
628
629
630
631
632
            max_label = int(max(labels_3d) if len(labels_3d) > 0 else 0)
            bbox_color = palette if self.bbox_color is None \
                else self.bbox_color
            bbox_palette = get_palette(bbox_color, max_label + 1)
            colors = [bbox_palette[label] for label in labels_3d]

633
            self.set_points(points, pcd_mode=2)
634
            self.draw_bboxes_3d(bboxes_3d_depth, bbox_color=colors)
ZCMax's avatar
ZCMax committed
635

636
637
            data_3d['bboxes_3d'] = tensor2ndarray(bboxes_3d_depth.tensor)
            data_3d['points'] = points
ZCMax's avatar
ZCMax committed
638

639
        if vis_task in ['mono_det', 'multi-modality_det']:
ZCMax's avatar
ZCMax committed
640
            assert 'img' in data_input
641
            img = data_input['img']
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
            if isinstance(img, list) or (isinstance(img, (np.ndarray, Tensor))
                                         and len(img.shape) == 4):
                # show multi-view images
                img_size = img[0].shape[:2] if isinstance(
                    img, list) else img.shape[-2:]  # noqa: E501
                img_col = self.multi_imgs_col
                img_row = math.ceil(len(img) / img_col)
                composed_img = np.zeros(
                    (img_size[0] * img_row, img_size[1] * img_col, 3),
                    dtype=np.uint8)
                for i, single_img in enumerate(img):
                    # Note that we should keep the same order of elements both
                    # in `img` and `input_meta`
                    if isinstance(single_img, Tensor):
                        single_img = single_img.permute(1, 2, 0).numpy()
                        single_img = single_img[..., [2, 1, 0]]  # bgr to rgb
                    self.set_image(single_img)
                    single_img_meta = dict()
                    for key, meta in input_meta.items():
                        if isinstance(meta,
                                      (Sequence, np.ndarray,
                                       Tensor)) and len(meta) == len(img):
                            single_img_meta[key] = meta[i]
                        else:
                            single_img_meta[key] = meta
667
668
669
670
671
672
673
674

                    max_label = int(
                        max(labels_3d) if len(labels_3d) > 0 else 0)
                    bbox_color = palette if self.bbox_color is None \
                        else self.bbox_color
                    bbox_palette = get_palette(bbox_color, max_label + 1)
                    colors = [bbox_palette[label] for label in labels_3d]

675
676
677
                    self.draw_proj_bboxes_3d(
                        bboxes_3d,
                        single_img_meta,
678
679
                        img_size=single_img.shape[:2][::-1],
                        edge_colors=colors)
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
                    if vis_task == 'mono_det' and hasattr(
                            instances, 'centers_2d'):
                        centers_2d = instances.centers_2d
                        self.draw_points(centers_2d)
                    composed_img[(i // img_col) *
                                 img_size[0]:(i // img_col + 1) * img_size[0],
                                 (i % img_col) *
                                 img_size[1]:(i % img_col + 1) *
                                 img_size[1]] = self.get_image()
                data_3d['img'] = composed_img
            else:
                # show single-view image
                # TODO: Solve the problem: some line segments of 3d bboxes are
                # out of image by a large margin
                if isinstance(data_input['img'], Tensor):
                    img = img.permute(1, 2, 0).numpy()
                    img = img[..., [2, 1, 0]]  # bgr to rgb
                self.set_image(img)
698
699
700
701
702
703
704
705
706

                max_label = int(max(labels_3d) if len(labels_3d) > 0 else 0)
                bbox_color = palette if self.bbox_color is None \
                    else self.bbox_color
                bbox_palette = get_palette(bbox_color, max_label + 1)
                colors = [bbox_palette[label] for label in labels_3d]

                self.draw_proj_bboxes_3d(
                    bboxes_3d, input_meta, edge_colors=colors)
707
708
709
710
711
                if vis_task == 'mono_det' and hasattr(instances, 'centers_2d'):
                    centers_2d = instances.centers_2d
                    self.draw_points(centers_2d)
                drawn_img = self.get_image()
                data_3d['img'] = drawn_img
ZCMax's avatar
ZCMax committed
712
713
714
715

        return data_3d

    def _draw_pts_sem_seg(self,
716
                          points: Union[Tensor, np.ndarray],
zhangshilong's avatar
zhangshilong committed
717
                          pts_seg: PointData,
ZCMax's avatar
ZCMax committed
718
                          palette: Optional[List[tuple]] = None,
719
                          ignore_index: Optional[int] = None) -> None:
720
721
722
        """Draw 3D semantic mask of GT or prediction.

        Args:
723
724
725
726
727
728
            points (Tensor or np.ndarray): The input point cloud to draw.
            pts_seg (:obj:`PointData`): Data structure for pixel-level
                annotations or predictions.
            palette (List[tuple], optional): Palette information corresponding
                to the category. Defaults to None.
            ignore_index (int, optional): Ignore category. Defaults to None.
729
        """
ZCMax's avatar
ZCMax committed
730
731
732
733
        check_type('points', points, (np.ndarray, Tensor))

        points = tensor2ndarray(points)
        pts_sem_seg = tensor2ndarray(pts_seg.pts_semantic_mask)
734
        palette = np.array(palette)
ZCMax's avatar
ZCMax committed
735
736
737
738
739
740
741
742

        if ignore_index is not None:
            points = points[pts_sem_seg != ignore_index]
            pts_sem_seg = pts_sem_seg[pts_sem_seg != ignore_index]

        pts_color = palette[pts_sem_seg]
        seg_color = np.concatenate([points[:, :3], pts_color], axis=1)

743
        self.set_points(points, pcd_mode=2, vis_mode='add')
744
        self.draw_seg_mask(seg_color)
ZCMax's avatar
ZCMax committed
745
746
747

    @master_only
    def show(self,
748
             save_path: Optional[str] = None,
ZCMax's avatar
ZCMax committed
749
750
751
752
             drawn_img_3d: Optional[np.ndarray] = None,
             drawn_img: Optional[np.ndarray] = None,
             win_name: str = 'image',
             wait_time: int = 0,
753
754
             continue_key: str = ' ',
             vis_task: str = 'lidar_det') -> None:
755
        """Show the drawn point cloud/image.
ZCMax's avatar
ZCMax committed
756
757

        Args:
758
            save_path (str, optional): Path to save open3d visualized results.
759
760
761
762
                Defaults to None.
            drawn_img_3d (np.ndarray, optional): The image to show. If
                drawn_img_3d is not None, it will show the image got by
                Visualizer. Defaults to None.
ZCMax's avatar
ZCMax committed
763
            drawn_img (np.ndarray, optional): The image to show. If drawn_img
764
765
766
767
768
769
                is not None, it will show the image got by Visualizer.
                Defaults to None.
            win_name (str): The image title. Defaults to 'image'.
            wait_time (int): Delay in milliseconds. 0 is the special value that
                means "forever". Defaults to 0.
            continue_key (str): The key for users to continue. Defaults to ' '.
ZCMax's avatar
ZCMax committed
770
        """
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
        if vis_task == 'multi-modality_det':
            img_wait_time = 0.5
        else:
            img_wait_time = wait_time

        # In order to show multi-modal results at the same time, we show image
        # firstly and then show point cloud since the running of
        # Open3D will block the process
        if hasattr(self, '_image'):
            if drawn_img is None and drawn_img_3d is None:
                # use the image got by Visualizer.get_image()
                super().show(drawn_img_3d, win_name, img_wait_time,
                             continue_key)
            else:
                if drawn_img_3d is not None:
                    super().show(drawn_img_3d, win_name, img_wait_time,
                                 continue_key)
                if drawn_img is not None:
                    super().show(drawn_img, win_name, img_wait_time,
                                 continue_key)

792
        if hasattr(self, 'o3d_vis'):
793
794
795
796
797
798
            self.o3d_vis.poll_events()
            self.o3d_vis.update_renderer()
            if wait_time > 0:
                time.sleep(wait_time)
            else:
                self.o3d_vis.run()
799
            if save_path is not None:
800
801
802
                if not (save_path.endswith('.png')
                        or save_path.endswith('.jpg')):
                    save_path += '.png'
803
                self.o3d_vis.capture_screen_image(save_path)
804
805
806

            # TODO: support more flexible window control
            self.o3d_vis.clear_geometries()
ZCMax's avatar
ZCMax committed
807
            self.o3d_vis.destroy_window()
808
            self.o3d_vis.close()
809
            self._clear_o3d_vis()
ZCMax's avatar
ZCMax committed
810

811
812
    # TODO: Support Visualize the 3D results from image and point cloud
    # respectively
ZCMax's avatar
ZCMax committed
813
814
815
816
    @master_only
    def add_datasample(self,
                       name: str,
                       data_input: dict,
817
                       data_sample: Optional[Det3DDataSample] = None,
ZCMax's avatar
ZCMax committed
818
819
820
821
822
                       draw_gt: bool = True,
                       draw_pred: bool = True,
                       show: bool = False,
                       wait_time: float = 0,
                       out_file: Optional[str] = None,
823
                       o3d_save_path: Optional[str] = None,
824
                       vis_task: str = 'mono_det',
ZCMax's avatar
ZCMax committed
825
826
827
828
                       pred_score_thr: float = 0.3,
                       step: int = 0) -> None:
        """Draw datasample and save to all backends.

829
830
831
832
833
        - If GT and prediction are plotted at the same time, they are displayed
          in a stitched image where the left image is the ground truth and the
          right image is the prediction.
        - If ``show`` is True, all storage backends are ignored, and the images
          will be displayed in a local window.
834
        - If ``out_file`` is specified, the drawn image will be saved to
835
          ``out_file``. It is usually used when the display is not available.
ZCMax's avatar
ZCMax committed
836
837
838
839
840

        Args:
            name (str): The image identifier.
            data_input (dict): It should include the point clouds or image
                to draw.
841
            data_sample (:obj:`Det3DDataSample`, optional): Prediction
ZCMax's avatar
ZCMax committed
842
843
                Det3DDataSample. Defaults to None.
            draw_gt (bool): Whether to draw GT Det3DDataSample.
844
                Defaults to True.
ZCMax's avatar
ZCMax committed
845
846
            draw_pred (bool): Whether to draw Prediction Det3DDataSample.
                Defaults to True.
847
848
            show (bool): Whether to display the drawn point clouds and image.
                Defaults to False.
ZCMax's avatar
ZCMax committed
849
            wait_time (float): The interval of show (s). Defaults to 0.
850
            out_file (str, optional): Path to output file. Defaults to None.
851
            o3d_save_path (str, optional): Path to save open3d visualized
852
853
                results. Defaults to None.
            vis_task (str): Visualization task. Defaults to 'mono_det'.
ZCMax's avatar
ZCMax committed
854
855
856
857
            pred_score_thr (float): The threshold to visualize the bboxes
                and masks. Defaults to 0.3.
            step (int): Global step value to record. Defaults to 0.
        """
858
859
860
861
862
863
        assert vis_task in (
            'mono_det', 'multi-view_det', 'lidar_det', 'lidar_seg',
            'multi-modality_det'), f'got unexpected vis_task {vis_task}.'
        classes = self.dataset_meta.get('classes', None)
        # For object detection datasets, no palette is saved
        palette = self.dataset_meta.get('palette', None)
ZCMax's avatar
ZCMax committed
864
865
        ignore_index = self.dataset_meta.get('ignore_index', None)

866
867
868
869
870
        gt_data_3d = None
        pred_data_3d = None
        gt_img_data = None
        pred_img_data = None

871
872
873
874
875
876
        if draw_gt and data_sample is not None:
            if 'gt_instances_3d' in data_sample:
                gt_data_3d = self._draw_instances_3d(
                    data_input, data_sample.gt_instances_3d,
                    data_sample.metainfo, vis_task, palette)
            if 'gt_instances' in data_sample:
ChaimZhu's avatar
ChaimZhu committed
877
878
                if len(data_sample.gt_instances) > 0:
                    assert 'img' in data_input
879
                    img = data_input['img']
ChaimZhu's avatar
ChaimZhu committed
880
881
882
883
884
                    if isinstance(data_input['img'], Tensor):
                        img = data_input['img'].permute(1, 2, 0).numpy()
                        img = img[..., [2, 1, 0]]  # bgr to rgb
                    gt_img_data = self._draw_instances(
                        img, data_sample.gt_instances, classes, palette)
885
            if 'gt_pts_seg' in data_sample and vis_task == 'lidar_seg':
ZCMax's avatar
ZCMax committed
886
887
                assert classes is not None, 'class information is ' \
                                            'not provided when ' \
888
                                            'visualizing semantic ' \
ZCMax's avatar
ZCMax committed
889
890
                                            'segmentation results.'
                assert 'points' in data_input
891
                self._draw_pts_sem_seg(data_input['points'],
892
                                       data_sample.gt_pts_seg, palette,
893
                                       ignore_index)
ZCMax's avatar
ZCMax committed
894

895
896
897
        if draw_pred and data_sample is not None:
            if 'pred_instances_3d' in data_sample:
                pred_instances_3d = data_sample.pred_instances_3d
898
                # .cpu can not be used for BaseInstance3DBoxes
899
                # so we need to use .to('cpu')
ZCMax's avatar
ZCMax committed
900
                pred_instances_3d = pred_instances_3d[
901
                    pred_instances_3d.scores_3d > pred_score_thr].to('cpu')
ZCMax's avatar
ZCMax committed
902
903
                pred_data_3d = self._draw_instances_3d(data_input,
                                                       pred_instances_3d,
904
                                                       data_sample.metainfo,
ZCMax's avatar
ZCMax committed
905
                                                       vis_task, palette)
906
907
908
            if 'pred_instances' in data_sample:
                if 'img' in data_input and len(data_sample.pred_instances) > 0:
                    pred_instances = data_sample.pred_instances
909
                    pred_instances = pred_instances[
910
                        pred_instances.scores > pred_score_thr].cpu()
911
                    img = data_input['img']
912
913
914
915
916
                    if isinstance(data_input['img'], Tensor):
                        img = data_input['img'].permute(1, 2, 0).numpy()
                        img = img[..., [2, 1, 0]]  # bgr to rgb
                    pred_img_data = self._draw_instances(
                        img, pred_instances, classes, palette)
917
            if 'pred_pts_seg' in data_sample and vis_task == 'lidar_seg':
ZCMax's avatar
ZCMax committed
918
919
                assert classes is not None, 'class information is ' \
                                            'not provided when ' \
920
                                            'visualizing semantic ' \
ZCMax's avatar
ZCMax committed
921
922
                                            'segmentation results.'
                assert 'points' in data_input
923
924
925
                self._draw_pts_sem_seg(data_input['points'],
                                       data_sample.pred_pts_seg, palette,
                                       ignore_index)
ZCMax's avatar
ZCMax committed
926
927

        # monocular 3d object detection image
928
        if vis_task in ['mono_det', 'multi-modality_det']:
929
930
931
932
933
934
935
            if gt_data_3d is not None and pred_data_3d is not None:
                drawn_img_3d = np.concatenate(
                    (gt_data_3d['img'], pred_data_3d['img']), axis=1)
            elif gt_data_3d is not None:
                drawn_img_3d = gt_data_3d['img']
            elif pred_data_3d is not None:
                drawn_img_3d = pred_data_3d['img']
936
937
            else:  # both instances of gt and pred are empty
                drawn_img_3d = None
ZCMax's avatar
ZCMax committed
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
        else:
            drawn_img_3d = None

        # 2d object detection image
        if gt_img_data is not None and pred_img_data is not None:
            drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
        elif gt_img_data is not None:
            drawn_img = gt_img_data
        elif pred_img_data is not None:
            drawn_img = pred_img_data
        else:
            drawn_img = None

        if show:
            self.show(
953
                o3d_save_path,
ZCMax's avatar
ZCMax committed
954
955
956
                drawn_img_3d,
                drawn_img,
                win_name=name,
957
958
                wait_time=wait_time,
                vis_task=vis_task)
ZCMax's avatar
ZCMax committed
959
960

        if out_file is not None:
961
962
963
            # check the suffix of the name of image file
            if not (out_file.endswith('.png') or out_file.endswith('.jpg')):
                out_file = f'{out_file}.png'
ZCMax's avatar
ZCMax committed
964
            if drawn_img_3d is not None:
965
                mmcv.imwrite(drawn_img_3d[..., ::-1], out_file)
ZCMax's avatar
ZCMax committed
966
            if drawn_img is not None:
967
                mmcv.imwrite(drawn_img[..., ::-1], out_file)
ZCMax's avatar
ZCMax committed
968
969
        else:
            self.add_image(name, drawn_img_3d, step)