local_visualizer.py 36.9 KB
Newer Older
ZCMax's avatar
ZCMax committed
1
2
# Copyright (c) OpenMMLab. All rights reserved.
import copy
3
from typing import List, Optional, Tuple, Union
ZCMax's avatar
ZCMax committed
4

5
import matplotlib.pyplot as plt
ZCMax's avatar
ZCMax committed
6
7
import mmcv
import numpy as np
8
9
10
from matplotlib.collections import PatchCollection
from matplotlib.patches import PathPatch
from matplotlib.path import Path
11
from mmdet.visualization import DetLocalVisualizer
ZCMax's avatar
ZCMax committed
12
from mmengine.dist import master_only
13
from mmengine.structures import InstanceData
14
from mmengine.visualization import Visualizer as MMENGINE_Visualizer
15
from mmengine.visualization.utils import check_type, tensor2ndarray
ZCMax's avatar
ZCMax committed
16
17
from torch import Tensor

18
from mmdet3d.registry import VISUALIZERS
19
20
21
22
23
from mmdet3d.structures import (BaseInstance3DBoxes, Box3DMode,
                                CameraInstance3DBoxes, Coord3DMode,
                                DepthInstance3DBoxes, Det3DDataSample,
                                LiDARInstance3DBoxes, PointData,
                                points_cam2img)
24
25
from .vis_utils import (proj_camera_bbox3d_to_img, proj_depth_bbox3d_to_img,
                        proj_lidar_bbox3d_to_img, to_depth_mode)
zhangshilong's avatar
zhangshilong committed
26

ZCMax's avatar
ZCMax committed
27
28
29
try:
    import open3d as o3d
    from open3d import geometry
30
    from open3d.visualization import Visualizer
ZCMax's avatar
ZCMax committed
31
except ImportError:
32
    o3d = geometry = Visualizer = None
ZCMax's avatar
ZCMax committed
33
34
35
36
37
38
39
40
41
42


@VISUALIZERS.register_module()
class Det3DLocalVisualizer(DetLocalVisualizer):
    """MMDetection3D Local Visualizer.

    - 3D detection and segmentation drawing methods

      - draw_bboxes_3d: draw 3D bounding boxes on point clouds
      - draw_proj_bboxes_3d: draw projected 3D bounding boxes on image
zhangshilong's avatar
zhangshilong committed
43
      - draw_seg_mask: draw segmentation mask via per-point colorization
ZCMax's avatar
ZCMax committed
44
45
46

    Args:
        name (str): Name of the instance. Defaults to 'visualizer'.
47
48
49
        points (np.ndarray, optional): Points to visualize with shape (N, 3+C).
            Defaults to None.
        image (np.ndarray, optional): The origin image to draw. The format
ZCMax's avatar
ZCMax committed
50
            should be RGB. Defaults to None.
51
52
53
        pcd_mode (int): The point cloud mode (coordinates): 0 represents LiDAR,
            1 represents CAMERA, 2 represents Depth. Defaults to 0.
        vis_backends (List[dict], optional): Visual backend config list.
ZCMax's avatar
ZCMax committed
54
55
56
57
            Defaults to None.
        save_dir (str, optional): Save file dir for all storage backends.
            If it is None, the backend storage will not save any data.
            Defaults to None.
58
59
60
61
62
63
64
        bbox_color (str or Tuple[int], optional): Color of bbox lines.
            The tuple of color should be in BGR order. Defaults to None.
        text_color (str or Tuple[int]): Color of texts. The tuple of color
            should be in BGR order. Defaults to (200, 200, 200).
        mask_color (str or Tuple[int], optional): Color of masks. The tuple of
            color should be in BGR order. Defaults to None.
        line_width (int or float): The linewidth of lines. Defaults to 3.
65
        frame_cfg (dict): The coordinate frame config while Open3D
zhangshilong's avatar
zhangshilong committed
66
67
            visualization initialization.
            Defaults to dict(size=1, origin=[0, 0, 0]).
68
69
        alpha (int or float): The transparency of bboxes or mask.
            Defaults to 0.8.
ZCMax's avatar
ZCMax committed
70
71
72
73

    Examples:
        >>> import numpy as np
        >>> import torch
74
        >>> from mmengine.structures import InstanceData
75
76
        >>> from mmdet3d.structures import (DepthInstance3DBoxes
        ...                                 Det3DDataSample)
zhangshilong's avatar
zhangshilong committed
77
        >>> from mmdet3d.visualization import Det3DLocalVisualizer
ZCMax's avatar
ZCMax committed
78
79

        >>> det3d_local_visualizer = Det3DLocalVisualizer()
80
81
        >>> image = np.random.randint(0, 256, size=(10, 12, 3)).astype('uint8')
        >>> points = np.random.rand(1000, 3)
ZCMax's avatar
ZCMax committed
82
        >>> gt_instances_3d = InstanceData()
83
84
        >>> gt_instances_3d.bboxes_3d = DepthInstance3DBoxes(
        ...     torch.rand((5, 7)))
zhangshilong's avatar
zhangshilong committed
85
        >>> gt_instances_3d.labels_3d = torch.randint(0, 2, (5,))
ZCMax's avatar
ZCMax committed
86
87
        >>> gt_det3d_data_sample = Det3DDataSample()
        >>> gt_det3d_data_sample.gt_instances_3d = gt_instances_3d
zhangshilong's avatar
zhangshilong committed
88
89
        >>> data_input = dict(img=image, points=points)
        >>> det3d_local_visualizer.add_datasample('3D Scene', data_input,
90
91
92
93
94
95
96
97
98
99
100
101
102
        ...                                       gt_det3d_data_sample)

        >>> from mmdet3d.structures import PointData
        >>> det3d_local_visualizer = Det3DLocalVisualizer()
        >>> points = np.random.rand(1000, 3)
        >>> gt_pts_seg = PointData()
        >>> gt_pts_seg.pts_semantic_mask = torch.randint(0, 10, (1000, ))
        >>> gt_det3d_data_sample = Det3DDataSample()
        >>> gt_det3d_data_sample.gt_pts_seg = gt_pts_seg
        >>> data_input = dict(points=points)
        >>> det3d_local_visualizer.add_datasample('3D Scene', data_input,
        ...                                       gt_det3d_data_sample,
        ...                                       vis_task='lidar_seg')
ZCMax's avatar
ZCMax committed
103
104
105
106
    """

    def __init__(self,
                 name: str = 'visualizer',
107
                 points: Optional[np.ndarray] = None,
ZCMax's avatar
ZCMax committed
108
                 image: Optional[np.ndarray] = None,
109
                 pcd_mode: int = 0,
110
                 vis_backends: Optional[List[dict]] = None,
ZCMax's avatar
ZCMax committed
111
112
                 save_dir: Optional[str] = None,
                 bbox_color: Optional[Union[str, Tuple[int]]] = None,
113
                 text_color: Union[str, Tuple[int]] = (200, 200, 200),
ZCMax's avatar
ZCMax committed
114
115
                 mask_color: Optional[Union[str, Tuple[int]]] = None,
                 line_width: Union[int, float] = 3,
116
                 frame_cfg: dict = dict(size=1, origin=[0, 0, 0]),
117
                 alpha: Union[int, float] = 0.8) -> None:
ZCMax's avatar
ZCMax committed
118
119
120
121
122
123
124
125
126
127
        super().__init__(
            name=name,
            image=image,
            vis_backends=vis_backends,
            save_dir=save_dir,
            bbox_color=bbox_color,
            text_color=text_color,
            mask_color=mask_color,
            line_width=line_width,
            alpha=alpha)
128
129
130
        if points is not None:
            self.set_points(points, pcd_mode=pcd_mode, frame_cfg=frame_cfg)
        self.pts_seg_num = 0
ZCMax's avatar
ZCMax committed
131

132
133
134
135
136
137
138
139
    def _clear_o3d_vis(self) -> None:
        """Clear open3d vis."""

        if hasattr(self, 'o3d_vis'):
            del self.o3d_vis
            del self.pcd
            del self.points_colors

140
    def _initialize_o3d_vis(self, frame_cfg: dict) -> Visualizer:
141
        """Initialize open3d vis according to frame_cfg.
ZCMax's avatar
ZCMax committed
142
143

        Args:
144
145
            frame_cfg (dict): The config to create coordinate frame in open3d
                vis.
ZCMax's avatar
ZCMax committed
146
147

        Returns:
148
            :obj:`o3d.visualization.Visualizer`: Created open3d vis.
ZCMax's avatar
ZCMax committed
149
        """
150
151
152
        if o3d is None or geometry is None:
            raise ImportError(
                'Please run "pip install open3d" to install open3d first.')
ZCMax's avatar
ZCMax committed
153
154
155
        o3d_vis = o3d.visualization.Visualizer()
        o3d_vis.create_window()
        # create coordinate frame
156
        mesh_frame = geometry.TriangleMesh.create_coordinate_frame(**frame_cfg)
ZCMax's avatar
ZCMax committed
157
158
159
160
161
162
        o3d_vis.add_geometry(mesh_frame)
        return o3d_vis

    @master_only
    def set_points(self,
                   points: np.ndarray,
163
                   pcd_mode: int = 0,
164
                   vis_mode: str = 'replace',
165
                   frame_cfg: dict = dict(size=1, origin=[0, 0, 0]),
166
                   points_color: Tuple[float] = (0.5, 0.5, 0.5),
ZCMax's avatar
ZCMax committed
167
168
                   points_size: int = 2,
                   mode: str = 'xyz') -> None:
169
        """Set the point cloud to draw.
ZCMax's avatar
ZCMax committed
170
171

        Args:
172
173
174
            points (np.ndarray): Points to visualize with shape (N, 3+C).
            pcd_mode (int): The point cloud mode (coordinates): 0 represents
                LiDAR, 1 represents CAMERA, 2 represents Depth. Defaults to 0.
175
            vis_mode (str): The visualization mode in Open3D:
176
177
178
179
180

                - 'replace': Replace the existing point cloud with input point
                  cloud.
                - 'add': Add input point cloud into existing point cloud.

181
                Defaults to 'replace'.
182
            frame_cfg (dict): The coordinate frame config for Open3D
183
184
                visualization initialization.
                Defaults to dict(size=1, origin=[0, 0, 0]).
185
186
187
188
189
190
            points_color (Tuple[float]): The color of points.
                Defaults to (0.5, 0.5, 0.5).
            points_size (int): The size of points to show on visualizer.
                Defaults to 2.
            mode (str): Indicate type of the input points, available mode
                ['xyz', 'xyzrgb']. Defaults to 'xyz'.
ZCMax's avatar
ZCMax committed
191
192
        """
        assert points is not None
193
        assert vis_mode in ('replace', 'add')
ZCMax's avatar
ZCMax committed
194
195
        check_type('points', points, np.ndarray)

196
197
198
        if not hasattr(self, 'o3d_vis'):
            self.o3d_vis = self._initialize_o3d_vis(frame_cfg)

199
200
201
202
        # for now we convert points into depth mode for visualization
        if pcd_mode != Coord3DMode.DEPTH:
            points = Coord3DMode.convert(points, pcd_mode, Coord3DMode.DEPTH)

203
        if hasattr(self, 'pcd') and vis_mode != 'add':
ZCMax's avatar
ZCMax committed
204
205
206
            self.o3d_vis.remove_geometry(self.pcd)

        # set points size in Open3D
207
208
        if self.o3d_vis.get_render_option() is not None:
            self.o3d_vis.get_render_option().point_size = points_size
ZCMax's avatar
ZCMax committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

        points = points.copy()
        pcd = geometry.PointCloud()
        if mode == 'xyz':
            pcd.points = o3d.utility.Vector3dVector(points[:, :3])
            points_colors = np.tile(
                np.array(points_color), (points.shape[0], 1))
        elif mode == 'xyzrgb':
            pcd.points = o3d.utility.Vector3dVector(points[:, :3])
            points_colors = points[:, 3:6]
            # normalize to [0, 1] for Open3D drawing
            if not ((points_colors >= 0.0) & (points_colors <= 1.0)).all():
                points_colors /= 255.0
        else:
            raise NotImplementedError

        pcd.colors = o3d.utility.Vector3dVector(points_colors)
        self.o3d_vis.add_geometry(pcd)
        self.pcd = pcd
228
        self.points_colors = points_colors
ZCMax's avatar
ZCMax committed
229
230
231
232
233

    # TODO: assign 3D Box color according to pred / GT labels
    # We draw GT / pred bboxes on the same point cloud scenes
    # for better detection performance comparison
    def draw_bboxes_3d(self,
234
                       bboxes_3d: BaseInstance3DBoxes,
235
236
237
238
239
                       bbox_color: Tuple[float] = (0, 1, 0),
                       points_in_box_color: Tuple[float] = (1, 0, 0),
                       rot_axis: int = 2,
                       center_mode: str = 'lidar_bottom',
                       mode: str = 'xyz') -> None:
ZCMax's avatar
ZCMax committed
240
241
242
243
        """Draw bbox on visualizer and change the color of points inside
        bbox3d.

        Args:
244
245
246
247
248
249
250
251
252
253
254
255
            bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bbox
                (x, y, z, x_size, y_size, z_size, yaw) to visualize.
            bbox_color (Tuple[float]): The color of 3D bboxes.
                Defaults to (0, 1, 0).
            points_in_box_color (Tuple[float]): The color of points inside 3D
                bboxes. Defaults to (1, 0, 0).
            rot_axis (int): Rotation axis of 3D bboxes. Defaults to 2.
            center_mode (str): Indicates the center of bbox is bottom center or
                gravity center. Available mode
                ['lidar_bottom', 'camera_bottom']. Defaults to 'lidar_bottom'.
            mode (str): Indicates the type of input points, available mode
                ['xyz', 'xyzrgb']. Defaults to 'xyz'.
ZCMax's avatar
ZCMax committed
256
257
258
        """
        # Before visualizing the 3D Boxes in point cloud scene
        # we need to convert the boxes to Depth mode
259
260
261
262
        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)

        if not isinstance(bboxes_3d, DepthInstance3DBoxes):
            bboxes_3d = bboxes_3d.convert_to(Box3DMode.DEPTH)
ZCMax's avatar
ZCMax committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

        # convert bboxes to numpy dtype
        bboxes_3d = tensor2ndarray(bboxes_3d.tensor)

        in_box_color = np.array(points_in_box_color)

        for i in range(len(bboxes_3d)):
            center = bboxes_3d[i, 0:3]
            dim = bboxes_3d[i, 3:6]
            yaw = np.zeros(3)
            yaw[rot_axis] = bboxes_3d[i, 6]
            rot_mat = geometry.get_rotation_matrix_from_xyz(yaw)

            if center_mode == 'lidar_bottom':
                # bottom center to gravity center
                center[rot_axis] += dim[rot_axis] / 2
            elif center_mode == 'camera_bottom':
                # bottom center to gravity center
                center[rot_axis] -= dim[rot_axis] / 2
            box3d = geometry.OrientedBoundingBox(center, rot_mat, dim)

            line_set = geometry.LineSet.create_from_oriented_bounding_box(
                box3d)
            line_set.paint_uniform_color(bbox_color)
            # draw bboxes on visualizer
            self.o3d_vis.add_geometry(line_set)

            # change the color of points which are in box
            if self.pcd is not None and mode == 'xyz':
                indices = box3d.get_point_indices_within_bounding_box(
                    self.pcd.points)
                self.points_colors[indices] = in_box_color

        # update points colors
        if self.pcd is not None:
            self.pcd.colors = o3d.utility.Vector3dVector(self.points_colors)
            self.o3d_vis.update_geometry(self.pcd)

301
302
    def set_bev_image(self,
                      bev_image: Optional[np.ndarray] = None,
303
                      bev_shape: int = 900) -> None:
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        """Set the bev image to draw.

        Args:
            bev_image (np.ndarray, optional): The bev image to draw.
                Defaults to None.
            bev_shape (int): The bev image shape. Defaults to 900.
        """
        if bev_image is None:
            bev_image = np.zeros((bev_shape, bev_shape, 3), np.uint8)

        self._image = bev_image
        self.width, self.height = bev_image.shape[1], bev_image.shape[0]
        self._default_font_size = max(
            np.sqrt(self.height * self.width) // 90, 10)
        self.ax_save.cla()
        self.ax_save.axis(False)
        self.ax_save.imshow(bev_image, origin='lower')
        # plot camera view range
        x1 = np.linspace(0, self.width / 2)
        x2 = np.linspace(self.width / 2, self.width)
        self.ax_save.plot(
            x1,
            self.width / 2 - x1,
            ls='--',
            color='grey',
            linewidth=1,
            alpha=0.5)
        self.ax_save.plot(
            x2,
            x2 - self.width / 2,
            ls='--',
            color='grey',
            linewidth=1,
            alpha=0.5)
        self.ax_save.plot(
            self.width / 2,
            0,
            marker='+',
            markersize=16,
            markeredgecolor='red')

    # TODO: Support bev point cloud visualization
    @master_only
    def draw_bev_bboxes(self,
                        bboxes_3d: BaseInstance3DBoxes,
                        scale: int = 15,
350
351
                        edge_colors: Union[str, Tuple[int],
                                           List[Union[str, Tuple[int]]]] = 'o',
352
                        line_styles: Union[str, List[str]] = '-',
353
354
355
356
357
358
                        line_widths: Union[int, float, List[Union[int,
                                                                  float]]] = 1,
                        face_colors: Union[str, Tuple[int],
                                           List[Union[str,
                                                      Tuple[int]]]] = 'none',
                        alpha: Union[int, float] = 1) -> MMENGINE_Visualizer:
359
360
361
        """Draw projected 3D boxes on the image.

        Args:
362
363
            bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bbox
                (x, y, z, x_size, y_size, z_size, yaw) to visualize.
364
365
            scale (dict): Value to scale the bev bboxes for better
                visualization. Defaults to 15.
366
367
            edge_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The colors of bboxes. ``colors`` can have the same length with
368
369
370
371
                lines or just single value. If ``colors`` is single value, all
                the lines will have the same colors. Refer to `matplotlib.
                colors` for full list of formats that are accepted.
                Defaults to 'o'.
372
373
374
375
            line_styles (str or List[str]): The linestyle of lines.
                ``line_styles`` can have the same length with texts or just
                single value. If ``line_styles`` is single value, all the lines
                will have the same linestyle. Reference to
376
377
                https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
                for more details. Defaults to '-'.
378
379
380
381
382
383
384
            line_widths (int or float or List[int or float]): The linewidth of
                lines. ``line_widths`` can have the same length with lines or
                just single value. If ``line_widths`` is single value, all the
                lines will have the same linewidth. Defaults to 2.
            face_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The face colors. Defaults to 'none'.
            alpha (int or float): The transparency of bboxes. Defaults to 1.
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
        """

        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)
        bev_bboxes = tensor2ndarray(bboxes_3d.bev)
        # scale the bev bboxes for better visualization
        bev_bboxes[:, :4] *= scale
        ctr, w, h, theta = np.split(bev_bboxes, [2, 3, 4], axis=-1)
        cos_value, sin_value = np.cos(theta), np.sin(theta)
        vec1 = np.concatenate([w / 2 * cos_value, w / 2 * sin_value], axis=-1)
        vec2 = np.concatenate([-h / 2 * sin_value, h / 2 * cos_value], axis=-1)
        pt1 = ctr + vec1 + vec2
        pt2 = ctr + vec1 - vec2
        pt3 = ctr - vec1 - vec2
        pt4 = ctr - vec1 + vec2
        poly = np.stack([pt1, pt2, pt3, pt4], axis=-2)
        # move the object along x-axis
        poly[:, :, 0] += self.width / 2
        poly = [p for p in poly]
        return self.draw_polygons(
            poly,
            alpha=alpha,
            edge_colors=edge_colors,
            line_styles=line_styles,
            line_widths=line_widths,
            face_colors=face_colors)

    @master_only
412
413
414
415
    def draw_points_on_image(self,
                             points: Union[np.ndarray, Tensor],
                             pts2img: np.ndarray,
                             sizes: Union[np.ndarray, int] = 10) -> None:
416
417
418
        """Draw projected points on the image.

        Args:
419
420
421
422
            points (np.ndarray or Tensor): Points to draw.
            pts2img (np.ndarray): The transformation matrix from the coordinate
                of point cloud to image plane.
            sizes (np.ndarray or int): The marker size. Defaults to 10.
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
        """
        check_type('points', points, (np.ndarray, Tensor))
        points = tensor2ndarray(points)
        assert self._image is not None, 'Please set image using `set_image`'
        projected_points = points_cam2img(points, pts2img, with_depth=True)
        depths = projected_points[:, 2]
        colors = (depths % 20) / 20
        # use colormap to obtain the render color
        color_map = plt.get_cmap('jet')
        self.ax_save.scatter(
            projected_points[:, 0],
            projected_points[:, 1],
            c=colors,
            cmap=color_map,
            s=sizes,
            alpha=0.5,
            edgecolors='none')

441
    # TODO: set bbox color according to palette
442
    @master_only
443
444
445
446
447
448
449
450
451
452
453
    def draw_proj_bboxes_3d(
            self,
            bboxes_3d: BaseInstance3DBoxes,
            input_meta: dict,
            edge_colors: Union[str, Tuple[int],
                               List[Union[str, Tuple[int]]]] = 'royalblue',
            line_styles: Union[str, List[str]] = '-',
            line_widths: Union[int, float, List[Union[int, float]]] = 2,
            face_colors: Union[str, Tuple[int],
                               List[Union[str, Tuple[int]]]] = 'royalblue',
            alpha: Union[int, float] = 0.4):
ZCMax's avatar
ZCMax committed
454
455
456
        """Draw projected 3D boxes on the image.

        Args:
457
458
            bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bbox
                (x, y, z, x_size, y_size, z_size, yaw) to visualize.
ZCMax's avatar
ZCMax committed
459
            input_meta (dict): Input meta information.
460
461
            edge_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The colors of bboxes. ``colors`` can have the same length with
462
463
464
465
                lines or just single value. If ``colors`` is single value, all
                the lines will have the same colors. Refer to `matplotlib.
                colors` for full list of formats that are accepted.
                Defaults to 'royalblue'.
466
467
468
469
            line_styles (str or List[str]): The linestyle of lines.
                ``line_styles`` can have the same length with texts or just
                single value. If ``line_styles`` is single value, all the lines
                will have the same linestyle. Reference to
470
471
                https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
                for more details. Defaults to '-'.
472
473
474
475
476
477
478
            line_widths (int or float or List[int or float]): The linewidth of
                lines. ``line_widths`` can have the same length with lines or
                just single value. If ``line_widths`` is single value, all the
                lines will have the same linewidth. Defaults to 2.
            face_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The face colors. Defaults to 'royalblue'.
            alpha (int or float): The transparency of bboxes. Defaults to 0.4.
ZCMax's avatar
ZCMax committed
479
480
481
482
        """

        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)

483
        if isinstance(bboxes_3d, DepthInstance3DBoxes):
ZCMax's avatar
ZCMax committed
484
            proj_bbox3d_to_img = proj_depth_bbox3d_to_img
485
        elif isinstance(bboxes_3d, LiDARInstance3DBoxes):
ZCMax's avatar
ZCMax committed
486
            proj_bbox3d_to_img = proj_lidar_bbox3d_to_img
487
        elif isinstance(bboxes_3d, CameraInstance3DBoxes):
ZCMax's avatar
ZCMax committed
488
489
            proj_bbox3d_to_img = proj_camera_bbox3d_to_img
        else:
490
            raise NotImplementedError('unsupported box type!')
ZCMax's avatar
ZCMax committed
491

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
        corners_2d = proj_bbox3d_to_img(bboxes_3d, input_meta)

        lines_verts_idx = [0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 5, 1, 2, 6]
        lines_verts = corners_2d[:, lines_verts_idx, :]
        front_polys = corners_2d[:, 4:, :]
        codes = [Path.LINETO] * lines_verts.shape[1]
        codes[0] = Path.MOVETO
        pathpatches = []
        for i in range(len(corners_2d)):
            verts = lines_verts[i]
            pth = Path(verts, codes)
            pathpatches.append(PathPatch(pth))

        p = PatchCollection(
            pathpatches,
            facecolors='none',
            edgecolors=edge_colors,
            linewidths=line_widths,
            linestyles=line_styles)

        self.ax_save.add_collection(p)

        # draw a mask on the front of project bboxes
        front_polys = [front_poly for front_poly in front_polys]
        return self.draw_polygons(
            front_polys,
            alpha=alpha,
            edge_colors=edge_colors,
            line_styles=line_styles,
            line_widths=line_widths,
            face_colors=face_colors)
ZCMax's avatar
ZCMax committed
523

524
    @master_only
525
    def draw_seg_mask(self, seg_mask_colors: np.ndarray) -> None:
ZCMax's avatar
ZCMax committed
526
527
528
        """Add segmentation mask to visualizer via per-point colorization.

        Args:
529
530
531
            seg_mask_colors (np.ndarray): The segmentation mask with shape
                (N, 6), whose first 3 dims are point coordinates and last 3
                dims are converted colors.
ZCMax's avatar
ZCMax committed
532
533
534
535
        """
        # we can't draw the colors on existing points
        # in case gt and pred mask would overlap
        # instead we set a large offset along x-axis for each seg mask
536
        self.pts_seg_num += 1
ZCMax's avatar
ZCMax committed
537
        offset = (np.array(self.pcd.points).max(0) -
538
                  np.array(self.pcd.points).min(0))[0] * 1.2 * self.pts_seg_num
ZCMax's avatar
ZCMax committed
539
540
541
542
543
        mesh_frame = geometry.TriangleMesh.create_coordinate_frame(
            size=1, origin=[offset, 0, 0])  # create coordinate frame for seg
        self.o3d_vis.add_geometry(mesh_frame)
        seg_points = copy.deepcopy(seg_mask_colors)
        seg_points[:, 0] += offset
544
        self.set_points(seg_points, pcd_mode=2, vis_mode='add', mode='xyzrgb')
ZCMax's avatar
ZCMax committed
545

546
547
548
549
550
551
    def _draw_instances_3d(self,
                           data_input: dict,
                           instances: InstanceData,
                           input_meta: dict,
                           vis_task: str,
                           palette: Optional[List[tuple]] = None) -> dict:
ZCMax's avatar
ZCMax committed
552
553
554
555
        """Draw 3D instances of GT or prediction.

        Args:
            data_input (dict): The input dict to draw.
556
557
558
559
560
561
562
            instances (:obj:`InstanceData`): Data structure for instance-level
                annotations or predictions.
            input_meta (dict): Meta information.
            vis_task (str): Visualization task, it includes: 'lidar_det',
                'multi-modality_det', 'mono_det'.
            palette (List[tuple], optional): Palette information corresponding
                to the category. Defaults to None.
ZCMax's avatar
ZCMax committed
563
564

        Returns:
565
            dict: The drawn point cloud and image whose channel is RGB.
ZCMax's avatar
ZCMax committed
566
567
        """

568
569
570
571
        # Only visualize when there is at least one instance
        if not len(instances) > 0:
            return None

ZCMax's avatar
ZCMax committed
572
573
        bboxes_3d = instances.bboxes_3d  # BaseInstance3DBoxes

574
        data_3d = dict()
ZCMax's avatar
ZCMax committed
575

576
        if vis_task in ['lidar_det', 'multi-modality_det']:
ZCMax's avatar
ZCMax committed
577
578
579
580
581
582
583
584
585
586
            assert 'points' in data_input
            points = data_input['points']
            check_type('points', points, (np.ndarray, Tensor))
            points = tensor2ndarray(points)

            if not isinstance(bboxes_3d, DepthInstance3DBoxes):
                points, bboxes_3d_depth = to_depth_mode(points, bboxes_3d)
            else:
                bboxes_3d_depth = bboxes_3d.clone()

587
            self.set_points(points, pcd_mode=2)
ZCMax's avatar
ZCMax committed
588
589
            self.draw_bboxes_3d(bboxes_3d_depth)

590
591
            data_3d['bboxes_3d'] = tensor2ndarray(bboxes_3d_depth.tensor)
            data_3d['points'] = points
ZCMax's avatar
ZCMax committed
592

593
        if vis_task in ['mono_det', 'multi-modality_det']:
ZCMax's avatar
ZCMax committed
594
            assert 'img' in data_input
595
            img = data_input['img']
zhangshilong's avatar
zhangshilong committed
596
            if isinstance(data_input['img'], Tensor):
597
                img = img.permute(1, 2, 0).numpy()
zhangshilong's avatar
zhangshilong committed
598
599
                img = img[..., [2, 1, 0]]  # bgr to rgb
            self.set_image(img)
ZCMax's avatar
ZCMax committed
600
            self.draw_proj_bboxes_3d(bboxes_3d, input_meta)
601
602
603
            if vis_task == 'mono_det' and hasattr(instances, 'centers_2d'):
                centers_2d = instances.centers_2d
                self.draw_points(centers_2d)
ZCMax's avatar
ZCMax committed
604
            drawn_img = self.get_image()
605
            data_3d['img'] = drawn_img
ZCMax's avatar
ZCMax committed
606
607
608
609

        return data_3d

    def _draw_pts_sem_seg(self,
610
                          points: Union[Tensor, np.ndarray],
zhangshilong's avatar
zhangshilong committed
611
                          pts_seg: PointData,
ZCMax's avatar
ZCMax committed
612
                          palette: Optional[List[tuple]] = None,
613
                          ignore_index: Optional[int] = None) -> None:
614
615
616
        """Draw 3D semantic mask of GT or prediction.

        Args:
617
618
619
620
621
622
            points (Tensor or np.ndarray): The input point cloud to draw.
            pts_seg (:obj:`PointData`): Data structure for pixel-level
                annotations or predictions.
            palette (List[tuple], optional): Palette information corresponding
                to the category. Defaults to None.
            ignore_index (int, optional): Ignore category. Defaults to None.
623
        """
ZCMax's avatar
ZCMax committed
624
625
626
627
        check_type('points', points, (np.ndarray, Tensor))

        points = tensor2ndarray(points)
        pts_sem_seg = tensor2ndarray(pts_seg.pts_semantic_mask)
628
        palette = np.array(palette)
ZCMax's avatar
ZCMax committed
629
630
631
632
633
634
635
636

        if ignore_index is not None:
            points = points[pts_sem_seg != ignore_index]
            pts_sem_seg = pts_sem_seg[pts_sem_seg != ignore_index]

        pts_color = palette[pts_sem_seg]
        seg_color = np.concatenate([points[:, :3], pts_color], axis=1)

637
        self.set_points(points, pcd_mode=2, vis_mode='add')
638
        self.draw_seg_mask(seg_color)
ZCMax's avatar
ZCMax committed
639
640
641

    @master_only
    def show(self,
642
             save_path: Optional[str] = None,
ZCMax's avatar
ZCMax committed
643
644
645
646
             drawn_img_3d: Optional[np.ndarray] = None,
             drawn_img: Optional[np.ndarray] = None,
             win_name: str = 'image',
             wait_time: int = 0,
647
             continue_key: str = ' ') -> None:
648
        """Show the drawn point cloud/image.
ZCMax's avatar
ZCMax committed
649
650

        Args:
651
            save_path (str, optional): Path to save open3d visualized results.
652
653
654
655
                Defaults to None.
            drawn_img_3d (np.ndarray, optional): The image to show. If
                drawn_img_3d is not None, it will show the image got by
                Visualizer. Defaults to None.
ZCMax's avatar
ZCMax committed
656
            drawn_img (np.ndarray, optional): The image to show. If drawn_img
657
658
659
660
661
662
                is not None, it will show the image got by Visualizer.
                Defaults to None.
            win_name (str): The image title. Defaults to 'image'.
            wait_time (int): Delay in milliseconds. 0 is the special value that
                means "forever". Defaults to 0.
            continue_key (str): The key for users to continue. Defaults to ' '.
ZCMax's avatar
ZCMax committed
663
        """
664
        if hasattr(self, 'o3d_vis'):
ZCMax's avatar
ZCMax committed
665
            self.o3d_vis.run()
666
            if save_path is not None:
667
668
669
                if not (save_path.endswith('.png')
                        or save_path.endswith('.jpg')):
                    save_path += '.png'
670
                self.o3d_vis.capture_screen_image(save_path)
ZCMax's avatar
ZCMax committed
671
            self.o3d_vis.destroy_window()
672
            self._clear_o3d_vis()
ZCMax's avatar
ZCMax committed
673

674
        if hasattr(self, '_image'):
675
            if drawn_img_3d is not None:
676
                super().show(drawn_img_3d, win_name, wait_time, continue_key)
677
678
            if drawn_img is not None:
                super().show(drawn_img, win_name, wait_time, continue_key)
ZCMax's avatar
ZCMax committed
679

680
681
    # TODO: Support Visualize the 3D results from image and point cloud
    # respectively
ZCMax's avatar
ZCMax committed
682
683
684
685
    @master_only
    def add_datasample(self,
                       name: str,
                       data_input: dict,
686
                       data_sample: Optional[Det3DDataSample] = None,
ZCMax's avatar
ZCMax committed
687
688
689
690
691
                       draw_gt: bool = True,
                       draw_pred: bool = True,
                       show: bool = False,
                       wait_time: float = 0,
                       out_file: Optional[str] = None,
692
                       o3d_save_path: Optional[str] = None,
693
                       vis_task: str = 'mono_det',
ZCMax's avatar
ZCMax committed
694
695
696
697
                       pred_score_thr: float = 0.3,
                       step: int = 0) -> None:
        """Draw datasample and save to all backends.

698
699
700
701
702
        - If GT and prediction are plotted at the same time, they are displayed
          in a stitched image where the left image is the ground truth and the
          right image is the prediction.
        - If ``show`` is True, all storage backends are ignored, and the images
          will be displayed in a local window.
703
        - If ``out_file`` is specified, the drawn image will be saved to
704
          ``out_file``. It is usually used when the display is not available.
ZCMax's avatar
ZCMax committed
705
706
707
708
709

        Args:
            name (str): The image identifier.
            data_input (dict): It should include the point clouds or image
                to draw.
710
            data_sample (:obj:`Det3DDataSample`, optional): Prediction
ZCMax's avatar
ZCMax committed
711
712
                Det3DDataSample. Defaults to None.
            draw_gt (bool): Whether to draw GT Det3DDataSample.
713
                Defaults to True.
ZCMax's avatar
ZCMax committed
714
715
            draw_pred (bool): Whether to draw Prediction Det3DDataSample.
                Defaults to True.
716
717
            show (bool): Whether to display the drawn point clouds and image.
                Defaults to False.
ZCMax's avatar
ZCMax committed
718
            wait_time (float): The interval of show (s). Defaults to 0.
719
            out_file (str, optional): Path to output file. Defaults to None.
720
            o3d_save_path (str, optional): Path to save open3d visualized
721
722
                results. Defaults to None.
            vis_task (str): Visualization task. Defaults to 'mono_det'.
ZCMax's avatar
ZCMax committed
723
724
725
726
            pred_score_thr (float): The threshold to visualize the bboxes
                and masks. Defaults to 0.3.
            step (int): Global step value to record. Defaults to 0.
        """
727
728
729
730
731
732
        assert vis_task in (
            'mono_det', 'multi-view_det', 'lidar_det', 'lidar_seg',
            'multi-modality_det'), f'got unexpected vis_task {vis_task}.'
        classes = self.dataset_meta.get('classes', None)
        # For object detection datasets, no palette is saved
        palette = self.dataset_meta.get('palette', None)
ZCMax's avatar
ZCMax committed
733
734
        ignore_index = self.dataset_meta.get('ignore_index', None)

735
736
737
738
739
        gt_data_3d = None
        pred_data_3d = None
        gt_img_data = None
        pred_img_data = None

740
741
742
743
744
745
        if draw_gt and data_sample is not None:
            if 'gt_instances_3d' in data_sample:
                gt_data_3d = self._draw_instances_3d(
                    data_input, data_sample.gt_instances_3d,
                    data_sample.metainfo, vis_task, palette)
            if 'gt_instances' in data_sample:
ChaimZhu's avatar
ChaimZhu committed
746
747
                if len(data_sample.gt_instances) > 0:
                    assert 'img' in data_input
748
                    img = data_input['img']
ChaimZhu's avatar
ChaimZhu committed
749
750
751
752
753
                    if isinstance(data_input['img'], Tensor):
                        img = data_input['img'].permute(1, 2, 0).numpy()
                        img = img[..., [2, 1, 0]]  # bgr to rgb
                    gt_img_data = self._draw_instances(
                        img, data_sample.gt_instances, classes, palette)
754
            if 'gt_pts_seg' in data_sample and vis_task == 'lidar_seg':
ZCMax's avatar
ZCMax committed
755
756
                assert classes is not None, 'class information is ' \
                                            'not provided when ' \
757
                                            'visualizing semantic ' \
ZCMax's avatar
ZCMax committed
758
759
                                            'segmentation results.'
                assert 'points' in data_input
760
                self._draw_pts_sem_seg(data_input['points'],
761
                                       data_sample.gt_pts_seg, palette,
762
                                       ignore_index)
ZCMax's avatar
ZCMax committed
763

764
765
766
        if draw_pred and data_sample is not None:
            if 'pred_instances_3d' in data_sample:
                pred_instances_3d = data_sample.pred_instances_3d
767
                # .cpu can not be used for BaseInstance3DBoxes
768
                # so we need to use .to('cpu')
ZCMax's avatar
ZCMax committed
769
                pred_instances_3d = pred_instances_3d[
770
                    pred_instances_3d.scores_3d > pred_score_thr].to('cpu')
ZCMax's avatar
ZCMax committed
771
772
                pred_data_3d = self._draw_instances_3d(data_input,
                                                       pred_instances_3d,
773
                                                       data_sample.metainfo,
ZCMax's avatar
ZCMax committed
774
                                                       vis_task, palette)
775
776
777
            if 'pred_instances' in data_sample:
                if 'img' in data_input and len(data_sample.pred_instances) > 0:
                    pred_instances = data_sample.pred_instances
778
                    pred_instances = pred_instances[
779
                        pred_instances.scores > pred_score_thr].cpu()
780
                    img = data_input['img']
781
782
783
784
785
                    if isinstance(data_input['img'], Tensor):
                        img = data_input['img'].permute(1, 2, 0).numpy()
                        img = img[..., [2, 1, 0]]  # bgr to rgb
                    pred_img_data = self._draw_instances(
                        img, pred_instances, classes, palette)
786
            if 'pred_pts_seg' in data_sample and vis_task == 'lidar_seg':
ZCMax's avatar
ZCMax committed
787
788
                assert classes is not None, 'class information is ' \
                                            'not provided when ' \
789
                                            'visualizing semantic ' \
ZCMax's avatar
ZCMax committed
790
791
                                            'segmentation results.'
                assert 'points' in data_input
792
793
794
                self._draw_pts_sem_seg(data_input['points'],
                                       data_sample.pred_pts_seg, palette,
                                       ignore_index)
ZCMax's avatar
ZCMax committed
795
796

        # monocular 3d object detection image
797
        if vis_task in ['mono_det', 'multi-modality_det']:
798
799
800
801
802
803
804
            if gt_data_3d is not None and pred_data_3d is not None:
                drawn_img_3d = np.concatenate(
                    (gt_data_3d['img'], pred_data_3d['img']), axis=1)
            elif gt_data_3d is not None:
                drawn_img_3d = gt_data_3d['img']
            elif pred_data_3d is not None:
                drawn_img_3d = pred_data_3d['img']
805
806
            else:  # both instances of gt and pred are empty
                drawn_img_3d = None
ZCMax's avatar
ZCMax committed
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
        else:
            drawn_img_3d = None

        # 2d object detection image
        if gt_img_data is not None and pred_img_data is not None:
            drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
        elif gt_img_data is not None:
            drawn_img = gt_img_data
        elif pred_img_data is not None:
            drawn_img = pred_img_data
        else:
            drawn_img = None

        if show:
            self.show(
822
                o3d_save_path,
ZCMax's avatar
ZCMax committed
823
824
825
826
827
828
                drawn_img_3d,
                drawn_img,
                win_name=name,
                wait_time=wait_time)

        if out_file is not None:
829
830
831
            # check the suffix of the name of image file
            if not (out_file.endswith('.png') or out_file.endswith('.jpg')):
                out_file = f'{out_file}.png'
ZCMax's avatar
ZCMax committed
832
            if drawn_img_3d is not None:
833
                mmcv.imwrite(drawn_img_3d[..., ::-1], out_file)
ZCMax's avatar
ZCMax committed
834
            if drawn_img is not None:
835
                mmcv.imwrite(drawn_img[..., ::-1], out_file)
ZCMax's avatar
ZCMax committed
836
837
        else:
            self.add_image(name, drawn_img_3d, step)