lyft-3d.py 5.14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-80, -80, -5, 80, 80, 3]
# For Lyft we usually do 9-class detection
class_names = [
    'car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle', 'motorcycle',
    'bicycle', 'pedestrian', 'animal'
]
dataset_type = 'LyftDataset'
data_root = 'data/lyft/'
# Input modality for Lyft dataset, this is consistent with the submission
# format which requires the information in input_modality.
VVsssssk's avatar
VVsssssk committed
13
input_modality = dict(use_lidar=True, use_camera=False)
VVsssssk's avatar
VVsssssk committed
14
data_prefix = dict(pts='samples/LIDAR_TOP', img='', sweeps='sweeps/LIDAR_TOP')
15

16
17
18
19
20
21
22
23
# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection3d/lyft/'

# Method 2: Use backend_args, file_client_args in versions before 1.1.0rc4
# backend_args = dict(
24
25
#     backend='petrel',
#     path_mapping=dict({
26
27
28
29
#         './data/': 's3://openmmlab/datasets/detection3d/',
#          'data/': 's3://openmmlab/datasets/detection3d/'
#      }))
backend_args = None
30

31
train_pipeline = [
32
33
34
35
36
37
38
39
40
41
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=5,
        use_dim=5,
        backend_args=backend_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        backend_args=backend_args),
42
43
44
45
46
47
48
49
50
51
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0, 0, 0]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
VVsssssk's avatar
VVsssssk committed
52
53
54
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
55
56
]
test_pipeline = [
57
58
59
60
61
62
63
64
65
66
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=5,
        use_dim=5,
        backend_args=backend_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        backend_args=backend_args),
67
68
69
70
71
72
73
74
75
76
77
78
79
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
VVsssssk's avatar
VVsssssk committed
80
81
82
                type='PointsRangeFilter', point_cloud_range=point_cloud_range)
        ]),
    dict(type='Pack3DDetInputs', keys=['points'])
83
]
84
85
86
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
87
88
89
90
91
92
93
94
95
96
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=5,
        use_dim=5,
        backend_args=backend_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        backend_args=backend_args),
VVsssssk's avatar
VVsssssk committed
97
    dict(type='Pack3DDetInputs', keys=['points'])
98
]
VVsssssk's avatar
VVsssssk committed
99
100
101
102
103
104
train_dataloader = dict(
    batch_size=2,
    num_workers=2,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
105
106
        type=dataset_type,
        data_root=data_root,
VVsssssk's avatar
VVsssssk committed
107
        ann_file='lyft_infos_train.pkl',
108
        pipeline=train_pipeline,
109
        metainfo=dict(classes=class_names),
110
        modality=input_modality,
VVsssssk's avatar
VVsssssk committed
111
112
        data_prefix=data_prefix,
        test_mode=False,
113
114
        box_type_3d='LiDAR',
        backend_args=backend_args))
VVsssssk's avatar
VVsssssk committed
115
116
117
118
119
120
121
test_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
122
123
        type=dataset_type,
        data_root=data_root,
VVsssssk's avatar
VVsssssk committed
124
        ann_file='lyft_infos_val.pkl',
125
        pipeline=test_pipeline,
126
        metainfo=dict(classes=class_names),
127
        modality=input_modality,
VVsssssk's avatar
VVsssssk committed
128
129
        data_prefix=data_prefix,
        test_mode=True,
130
131
        box_type_3d='LiDAR',
        backend_args=backend_args))
VVsssssk's avatar
VVsssssk committed
132
133
134
135
136
137
138
val_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
139
140
        type=dataset_type,
        data_root=data_root,
VVsssssk's avatar
VVsssssk committed
141
        ann_file='lyft_infos_val.pkl',
142
        pipeline=test_pipeline,
143
        metainfo=dict(classes=class_names),
144
        modality=input_modality,
VVsssssk's avatar
VVsssssk committed
145
146
        test_mode=True,
        data_prefix=data_prefix,
147
148
        box_type_3d='LiDAR',
        backend_args=backend_args))
VVsssssk's avatar
VVsssssk committed
149
150
151
152

val_evaluator = dict(
    type='LyftMetric',
    ann_file=data_root + 'lyft_infos_val.pkl',
153
154
    metric='bbox',
    backend_args=backend_args)
VVsssssk's avatar
VVsssssk committed
155
156
157
test_evaluator = dict(
    type='LyftMetric',
    ann_file=data_root + 'lyft_infos_val.pkl',
158
159
    metric='bbox',
    backend_args=backend_args)
160
161
162
163

vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
    type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')