lyft-3d.py 4.69 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-80, -80, -5, 80, 80, 3]
# For Lyft we usually do 9-class detection
class_names = [
    'car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle', 'motorcycle',
    'bicycle', 'pedestrian', 'animal'
]
dataset_type = 'LyftDataset'
data_root = 'data/lyft/'
# Input modality for Lyft dataset, this is consistent with the submission
# format which requires the information in input_modality.
VVsssssk's avatar
VVsssssk committed
13
14
input_modality = dict(use_lidar=True, use_camera=False)
data_prefix = dict(pts='samples/LIDAR_TOP', img='')
15
16
17
18
19
20
21
22
23
24
25
26
27
file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
# file_client_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         './data/lyft/': 's3://lyft/lyft/',
#         'data/lyft/': 's3://lyft/lyft/'
#    }))
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
28
        coord_type='LIDAR',
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=file_client_args),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0, 0, 0]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
VVsssssk's avatar
VVsssssk committed
46
47
48
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
49
50
51
52
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
53
        coord_type='LIDAR',
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=file_client_args),
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
VVsssssk's avatar
VVsssssk committed
74
75
76
                type='PointsRangeFilter', point_cloud_range=point_cloud_range)
        ]),
    dict(type='Pack3DDetInputs', keys=['points'])
77
]
78
79
80
81
82
83
84
85
86
87
88
89
90
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=file_client_args),
VVsssssk's avatar
VVsssssk committed
91
    dict(type='Pack3DDetInputs', keys=['points'])
92
]
VVsssssk's avatar
VVsssssk committed
93
94
95
96
97
98
train_dataloader = dict(
    batch_size=2,
    num_workers=2,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
99
100
        type=dataset_type,
        data_root=data_root,
VVsssssk's avatar
VVsssssk committed
101
        ann_file='lyft_infos_train.pkl',
102
        pipeline=train_pipeline,
VVsssssk's avatar
VVsssssk committed
103
        metainfo=dict(CLASSES=class_names),
104
        modality=input_modality,
VVsssssk's avatar
VVsssssk committed
105
106
107
108
109
110
111
112
113
114
        data_prefix=data_prefix,
        test_mode=False,
        box_type_3d='LiDAR'))
test_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
115
116
        type=dataset_type,
        data_root=data_root,
VVsssssk's avatar
VVsssssk committed
117
        ann_file='lyft_infos_val.pkl',
118
        pipeline=test_pipeline,
VVsssssk's avatar
VVsssssk committed
119
        metainfo=dict(CLASSES=class_names),
120
        modality=input_modality,
VVsssssk's avatar
VVsssssk committed
121
122
123
124
125
126
127
128
129
130
        data_prefix=data_prefix,
        test_mode=True,
        box_type_3d='LiDAR'))
val_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
131
132
        type=dataset_type,
        data_root=data_root,
VVsssssk's avatar
VVsssssk committed
133
        ann_file='lyft_infos_val.pkl',
134
        pipeline=test_pipeline,
VVsssssk's avatar
VVsssssk committed
135
        metainfo=dict(CLASSES=class_names),
136
        modality=input_modality,
VVsssssk's avatar
VVsssssk committed
137
138
139
140
141
142
143
144
145
146
147
148
        test_mode=True,
        data_prefix=data_prefix,
        box_type_3d='LiDAR'))

val_evaluator = dict(
    type='LyftMetric',
    ann_file=data_root + 'lyft_infos_val.pkl',
    metric='bbox')
test_evaluator = dict(
    type='LyftMetric',
    ann_file=data_root + 'lyft_infos_val.pkl',
    metric='bbox')