transforms_3d.py 88 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import random
3
import warnings
4
from typing import List, Optional, Tuple, Union
5
6

import cv2
7
import mmcv
8
import numpy as np
9
from mmcv.transforms import BaseTransform, RandomResize, Resize
10
from mmengine import is_tuple_of
zhangwenwei's avatar
zhangwenwei committed
11

zhangshilong's avatar
zhangshilong committed
12
from mmdet3d.models.task_modules import VoxelGenerator
13
from mmdet3d.registry import TRANSFORMS
zhangshilong's avatar
zhangshilong committed
14
15
16
17
from mmdet3d.structures import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                                LiDARInstance3DBoxes)
from mmdet3d.structures.ops import box_np_ops
from mmdet3d.structures.points import BasePoints
18
19
20
from mmdet.datasets.transforms import (PhotoMetricDistortion, RandomCrop,
                                       RandomFlip)
from .compose import Compose
zhangwenwei's avatar
zhangwenwei committed
21
22
23
from .data_augment_utils import noise_per_object_v3_


24
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
25
class RandomDropPointsColor(BaseTransform):
26
27
28
29
30
31
32
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
33
        drop_ratio (float): The probability of dropping point colors.
34
35
36
            Defaults to 0.2.
    """

ZCMax's avatar
ZCMax committed
37
    def __init__(self, drop_ratio: float = 0.2) -> None:
38
39
40
41
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

ZCMax's avatar
ZCMax committed
42
    def transform(self, input_dict: dict) -> dict:
43
44
45
46
47
48
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
49
50
            dict: Results after color dropping, 'points' key is updated
            in the result dict.
51
52
53
54
55
56
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

57
58
59
60
61
62
63
        # this if-expression is a bit strange
        # `RandomDropPointsColor` is used in training 3D segmentor PAConv
        # we discovered in our experiments that, using
        # `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to
        # better results than using `if np.random.rand() < self.drop_ratio`
        # so we keep this hack in our codebase
        if np.random.rand() > 1.0 - self.drop_ratio:
64
65
66
            points.color = points.color * 0.0
        return input_dict

67
    def __repr__(self) -> str:
68
69
70
71
72
73
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


74
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
75
76
77
78
79
80
81
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

jshilong's avatar
jshilong committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
100
    Args:
101
        sync_2d (bool): Whether to apply flip according to the 2D
zhangwenwei's avatar
zhangwenwei committed
102
103
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
104
            to that of 2D images. Defaults to True.
105
        flip_ratio_bev_horizontal (float): The flipping probability
liyinhao's avatar
liyinhao committed
106
            in horizontal direction. Defaults to 0.0.
107
        flip_ratio_bev_vertical (float): The flipping probability
liyinhao's avatar
liyinhao committed
108
            in vertical direction. Defaults to 0.0.
109
110
        flip_box3d (bool): Whether to flip bounding box. In most of the case,
            the box should be fliped. In cam-based bev detection, this is set
111
112
            to False, since the flip of 2D images does not influence the 3D
            box. Defaults to True.
zhangwenwei's avatar
zhangwenwei committed
113
114
    """

wuyuefeng's avatar
wuyuefeng committed
115
    def __init__(self,
jshilong's avatar
jshilong committed
116
117
118
                 sync_2d: bool = True,
                 flip_ratio_bev_horizontal: float = 0.0,
                 flip_ratio_bev_vertical: float = 0.0,
119
                 flip_box3d: bool = True,
jshilong's avatar
jshilong committed
120
121
122
123
                 **kwargs) -> None:
        # `flip_ratio_bev_horizontal` is equal to
        # for flip prob of 2d image when
        # `sync_2d` is True
wuyuefeng's avatar
wuyuefeng committed
124
        super(RandomFlip3D, self).__init__(
jshilong's avatar
jshilong committed
125
            prob=flip_ratio_bev_horizontal, direction='horizontal', **kwargs)
zhangwenwei's avatar
zhangwenwei committed
126
        self.sync_2d = sync_2d
jshilong's avatar
jshilong committed
127
        self.flip_ratio_bev_horizontal = flip_ratio_bev_horizontal
wuyuefeng's avatar
wuyuefeng committed
128
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
129
        self.flip_box3d = flip_box3d
wuyuefeng's avatar
wuyuefeng committed
130
131
132
133
134
135
136
137
138
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

jshilong's avatar
jshilong committed
139
140
141
    def random_flip_data_3d(self,
                            input_dict: dict,
                            direction: str = 'horizontal') -> None:
142
143
        """Flip 3D data randomly.

jshilong's avatar
jshilong committed
144
145
146
147
148
149
150
        `random_flip_data_3d` should take these situations into consideration:

        - 1. LIDAR-based 3d detection
        - 2. LIDAR-based 3d segmentation
        - 3. vision-only detection
        - 4. multi-modality 3d detection.

151
152
        Args:
            input_dict (dict): Result dict from loading pipeline.
153
            direction (str): Flip direction. Defaults to 'horizontal'.
154
155

        Returns:
156
            dict: Flipped results, 'points', 'bbox3d_fields' keys are
157
            updated in the result dict.
158
        """
wuyuefeng's avatar
wuyuefeng committed
159
        assert direction in ['horizontal', 'vertical']
160
161
162
163
164
165
166
167
        if self.flip_box3d:
            if 'gt_bboxes_3d' in input_dict:
                if 'points' in input_dict:
                    input_dict['points'] = input_dict['gt_bboxes_3d'].flip(
                        direction, points=input_dict['points'])
                else:
                    # vision-only detection
                    input_dict['gt_bboxes_3d'].flip(direction)
168
            else:
169
                input_dict['points'].flip(direction)
jshilong's avatar
jshilong committed
170
171

        if 'centers_2d' in input_dict:
172
173
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
174
            w = input_dict['img_shape'][1]
jshilong's avatar
jshilong committed
175
176
            input_dict['centers_2d'][..., 0] = \
                w - input_dict['centers_2d'][..., 0]
177
178
            # need to modify the horizontal position of camera center
            # along u-axis in the image (flip like centers2d)
179
            # ['cam2img'][0][2] = c_u
180
181
            # see more details and examples at
            # https://github.com/open-mmlab/mmdetection3d/pull/744
182
            input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2]
zhangwenwei's avatar
zhangwenwei committed
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    def _flip_on_direction(self, results: dict) -> None:
        """Function to flip images, bounding boxes, semantic segmentation map
        and keypoints.

        Add the override feature that if 'flip' is already in results, use it
        to do the augmentation.
        """
        if 'flip' not in results:
            cur_dir = self._choose_direction()
        else:
            cur_dir = results['flip_direction']
        if cur_dir is None:
            results['flip'] = False
            results['flip_direction'] = None
        else:
            results['flip'] = True
            results['flip_direction'] = cur_dir
            self._flip(results)

jshilong's avatar
jshilong committed
203
    def transform(self, input_dict: dict) -> dict:
204
        """Call function to flip points, values in the ``bbox3d_fields`` and
205
206
207
208
209
210
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
211
            dict: Flipped results, 'flip', 'flip_direction',
212
213
            'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added
            into result dict.
214
        """
215
        # flip 2D image and its annotations
jshilong's avatar
jshilong committed
216
217
        if 'img' in input_dict:
            super(RandomFlip3D, self).transform(input_dict)
zhangwenwei's avatar
zhangwenwei committed
218

jshilong's avatar
jshilong committed
219
        if self.sync_2d and 'img' in input_dict:
wuyuefeng's avatar
wuyuefeng committed
220
221
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
222
        else:
wuyuefeng's avatar
wuyuefeng committed
223
224
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
jshilong's avatar
jshilong committed
225
                ) < self.flip_ratio_bev_horizontal else False
wuyuefeng's avatar
wuyuefeng committed
226
227
228
229
230
231
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

232
233
234
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
235
236
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
237
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
238
239
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
240
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
241
242
        return input_dict

243
    def __repr__(self) -> str:
244
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
245
        repr_str = self.__class__.__name__
246
        repr_str += f'(sync_2d={self.sync_2d},'
247
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
248
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
249

zhangwenwei's avatar
zhangwenwei committed
250

251
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
252
class RandomJitterPoints(BaseTransform):
253
254
    """Randomly jitter point coordinates.

255
    Different from the global translation in ``GlobalRotScaleTrans``, here we
256
    apply different noises to each point in a scene.
257
258
259

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
260
261
            This applies random noise to all points in a 3D scene, which is
            sampled from a gaussian distribution whose standard deviation is
262
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
263
        clip_range (list[float]): Clip the randomly generated jitter
264
265
266
267
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
268
        This transform should only be used in point cloud segmentation tasks
269
        because we don't transform ground-truth bboxes accordingly.
270
271
272
273
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
274
275
                 jitter_std: List[float] = [0.01, 0.01, 0.01],
                 clip_range: List[float] = [-0.05, 0.05]) -> None:
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

ZCMax's avatar
ZCMax committed
290
    def transform(self, input_dict: dict) -> dict:
291
292
293
294
295
296
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
297
            dict: Results after adding noise to each point,
298
            'points' key is updated in the result dict.
299
300
301
302
303
304
305
306
307
308
309
310
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

311
    def __repr__(self) -> str:
312
313
314
315
316
317
318
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


319
320
@TRANSFORMS.register_module()
class ObjectSample(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
321
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
322

323
324
325
326
327
328
329
330
331
332
    Required Keys:

    - points
    - ann_info
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Modified Keys:
333

334
335
336
337
338
339
340
341
342
343
    - points
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Added Keys:

    - plane (optional)

zhangwenwei's avatar
zhangwenwei committed
344
345
    Args:
        db_sampler (dict): Config dict of the database sampler.
346
        sample_2d (bool): Whether to also paste 2D image patch to the images.
zhangwenwei's avatar
zhangwenwei committed
347
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
348
            Defaults to False.
349
        use_ground_plane (bool): Whether to use ground plane to adjust the
350
            3D labels. Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
351
    """
zhangwenwei's avatar
zhangwenwei committed
352

353
354
355
    def __init__(self,
                 db_sampler: dict,
                 sample_2d: bool = False,
356
                 use_ground_plane: bool = False) -> None:
zhangwenwei's avatar
zhangwenwei committed
357
358
359
360
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
361
        self.db_sampler = TRANSFORMS.build(db_sampler)
362
        self.use_ground_plane = use_ground_plane
zhangwenwei's avatar
zhangwenwei committed
363
364

    @staticmethod
365
366
    def remove_points_in_boxes(points: BasePoints,
                               boxes: np.ndarray) -> np.ndarray:
367
368
369
        """Remove the points in the sampled bounding boxes.

        Args:
370
            points (:obj:`BasePoints`): Input point cloud array.
371
372
373
374
375
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
376
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
377
378
379
        points = points[np.logical_not(masks.any(-1))]
        return points

380
381
    def transform(self, input_dict: dict) -> dict:
        """Transform function to sample ground truth objects to the data.
382
383
384
385
386

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
387
            dict: Results after object sampling augmentation,
388
389
            'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated
            in the result dict.
390
        """
zhangwenwei's avatar
zhangwenwei committed
391
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
392
393
        gt_labels_3d = input_dict['gt_labels_3d']

ChaimZhu's avatar
ChaimZhu committed
394
395
        if self.use_ground_plane:
            ground_plane = input_dict.get('plane', None)
396
397
            assert ground_plane is not None, '`use_ground_plane` is True ' \
                                             'but find plane is None'
398
399
        else:
            ground_plane = None
zhangwenwei's avatar
zhangwenwei committed
400
401
402
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
403
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
404
405
406
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
407
408
409
410
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
411
412
        else:
            sampled_dict = self.db_sampler.sample_all(
413
414
415
416
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                img=None,
                ground_plane=ground_plane)
zhangwenwei's avatar
zhangwenwei committed
417
418
419
420

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
421
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
422

zhangwenwei's avatar
zhangwenwei committed
423
424
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
425
426
427
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
428

zhangwenwei's avatar
zhangwenwei committed
429
430
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
431
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
432
433
434
435
436

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
437

zhangwenwei's avatar
zhangwenwei committed
438
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
439
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
440
441

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
WRH's avatar
WRH committed
442
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.int64)
zhangwenwei's avatar
zhangwenwei committed
443
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
444

zhangwenwei's avatar
zhangwenwei committed
445
446
        return input_dict

447
    def __repr__(self) -> str:
448
        """str: Return a string that describes the module."""
449
        repr_str = self.__class__.__name__
450
        repr_str += f'(db_sampler={self.db_sampler},'
451
        repr_str += f' sample_2d={self.sample_2d},'
452
        repr_str += f' use_ground_plane={self.use_ground_plane})'
453
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
454
455


456
457
@TRANSFORMS.register_module()
class ObjectNoise(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
458
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
459

460
461
462
463
464
465
466
467
468
469
    Required Keys:

    - points
    - gt_bboxes_3d

    Modified Keys:

    - points
    - gt_bboxes_3d

zhangwenwei's avatar
zhangwenwei committed
470
    Args:
471
        translation_std (list[float]): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
472
473
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
474
        global_rot_range (list[float]): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
475
            Defaults to [0.0, 0.0].
476
        rot_range (list[float]): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
477
            Defaults to [-0.15707963267, 0.15707963267].
478
479
        num_try (int): Number of times to try if the noise applied is invalid.
            Defaults to 100.
zhangwenwei's avatar
zhangwenwei committed
480
    """
zhangwenwei's avatar
zhangwenwei committed
481
482

    def __init__(self,
483
484
485
486
                 translation_std: List[float] = [0.25, 0.25, 0.25],
                 global_rot_range: List[float] = [0.0, 0.0],
                 rot_range: List[float] = [-0.15707963267, 0.15707963267],
                 num_try: int = 100) -> None:
zhangwenwei's avatar
zhangwenwei committed
487
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
488
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
489
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
490
491
        self.num_try = num_try

492
493
    def transform(self, input_dict: dict) -> dict:
        """Transform function to apply noise to each ground truth in the scene.
494
495
496
497
498

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
499
            dict: Results after adding noise to each object,
500
            'points', 'gt_bboxes_3d' keys are updated in the result dict.
501
        """
zhangwenwei's avatar
zhangwenwei committed
502
503
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
504

505
        # TODO: this is inplace operation
506
        numpy_box = gt_bboxes_3d.tensor.numpy()
507
508
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
509
        noise_per_object_v3_(
510
            numpy_box,
511
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
512
513
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
514
515
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
516
517

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
518
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
519
520
        return input_dict

521
    def __repr__(self) -> str:
522
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
523
        repr_str = self.__class__.__name__
524
525
526
527
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
528
529
530
        return repr_str


531
@TRANSFORMS.register_module()
532
class GlobalAlignment(BaseTransform):
533
534
535
536
537
538
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
539
        We do not record the applied rotation and translation as in
540
541
        GlobalRotScaleTrans. Because usually, we do not need to reverse
        the alignment step.
542
        For example, ScanNet 3D detection task uses aligned ground-truth
543
        bounding boxes for evaluation.
544
545
    """

546
    def __init__(self, rotation_axis: int) -> None:
547
548
        self.rotation_axis = rotation_axis

549
    def _trans_points(self, results: dict, trans_factor: np.ndarray) -> None:
550
551
552
553
554
555
556
557
558
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
559
        results['points'].translate(trans_factor)
560

561
    def _rot_points(self, results: dict, rot_mat: np.ndarray) -> None:
562
563
564
565
566
567
568
569
570
571
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
572
        results['points'].rotate(rot_mat.T)
573

574
    def _check_rot_mat(self, rot_mat: np.ndarray) -> None:
575
576
577
578
579
580
581
582
583
584
585
586
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

587
    def transform(self, results: dict) -> dict:
588
589
590
591
592
593
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
594
            dict: Results after global alignment, 'points' and keys in
595
            input_dict['bbox3d_fields'] are updated in the result dict.
596
        """
597
        assert 'axis_align_matrix' in results, \
598
599
            'axis_align_matrix is not provided in GlobalAlignment'

600
        axis_align_matrix = results['axis_align_matrix']
601
602
603
604
605
606
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
607
608
        self._rot_points(results, rot_mat)
        self._trans_points(results, trans_vec)
609

610
        return results
611

612
    def __repr__(self) -> str:
613
        """str: Return a string that describes the module."""
614
615
616
617
618
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


619
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
620
class GlobalRotScaleTrans(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
621
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
622

jshilong's avatar
jshilong committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
641
    Args:
642
        rot_range (list[float]): Range of rotation angle.
liyinhao's avatar
liyinhao committed
643
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
644
        scale_ratio_range (list[float]): Range of scale ratio.
liyinhao's avatar
liyinhao committed
645
            Defaults to [0.95, 1.05].
646
        translation_std (list[float]): The standard deviation of
647
            translation noise applied to a scene, which
zhangwenwei's avatar
zhangwenwei committed
648
            is sampled from a gaussian distribution whose standard deviation
649
650
            is set by ``translation_std``. Defaults to [0, 0, 0].
        shift_height (bool): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
651
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
652
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
653
    """
zhangwenwei's avatar
zhangwenwei committed
654
655

    def __init__(self,
jshilong's avatar
jshilong committed
656
657
658
659
                 rot_range: List[float] = [-0.78539816, 0.78539816],
                 scale_ratio_range: List[float] = [0.95, 1.05],
                 translation_std: List[int] = [0, 0, 0],
                 shift_height: bool = False) -> None:
660
661
662
663
664
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
665
        self.rot_range = rot_range
666
667
668

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
jshilong's avatar
jshilong committed
669

zhangwenwei's avatar
zhangwenwei committed
670
        self.scale_ratio_range = scale_ratio_range
671
672
673
674
675
676
677

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
678
679
        assert all([std >= 0 for std in translation_std]), \
            'translation_std should be positive'
zhangwenwei's avatar
zhangwenwei committed
680
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
681
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
682

jshilong's avatar
jshilong committed
683
    def _trans_bbox_points(self, input_dict: dict) -> None:
684
685
686
687
688
689
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
690
            dict: Results after translation, 'points', 'pcd_trans'
691
            and `gt_bboxes_3d` is updated in the result dict.
692
        """
693
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
694
695
        trans_factor = np.random.normal(scale=translation_std, size=3).T

696
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
697
        input_dict['pcd_trans'] = trans_factor
jshilong's avatar
jshilong committed
698
699
        if 'gt_bboxes_3d' in input_dict:
            input_dict['gt_bboxes_3d'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
700

jshilong's avatar
jshilong committed
701
    def _rot_bbox_points(self, input_dict: dict) -> None:
702
703
704
705
706
707
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
708
            dict: Results after rotation, 'points', 'pcd_rotation'
709
            and `gt_bboxes_3d` is updated in the result dict.
710
        """
zhangwenwei's avatar
zhangwenwei committed
711
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
712
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
713

jshilong's avatar
jshilong committed
714
715
716
717
718
719
720
721
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            # rotate points with bboxes
            points, rot_mat_T = input_dict['gt_bboxes_3d'].rotate(
                noise_rotation, input_dict['points'])
            input_dict['points'] = points
        else:
            # if no bbox in input_dict, only rotate points
722
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
jshilong's avatar
jshilong committed
723
724
725
726
727

        input_dict['pcd_rotation'] = rot_mat_T
        input_dict['pcd_rotation_angle'] = noise_rotation

    def _scale_bbox_points(self, input_dict: dict) -> None:
728
729
730
731
732
733
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
734
            dict: Results after scaling, 'points' and
735
            `gt_bboxes_3d` is updated in the result dict.
736
        """
zhangwenwei's avatar
zhangwenwei committed
737
        scale = input_dict['pcd_scale_factor']
738
739
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
740
        if self.shift_height:
741
742
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
743
744
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
745

jshilong's avatar
jshilong committed
746
747
748
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            input_dict['gt_bboxes_3d'].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
749

jshilong's avatar
jshilong committed
750
    def _random_scale(self, input_dict: dict) -> None:
751
752
753
754
755
756
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
757
758
            dict: Results after scaling, 'pcd_scale_factor'
            are updated in the result dict.
759
        """
zhangwenwei's avatar
zhangwenwei committed
760
761
762
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
763

jshilong's avatar
jshilong committed
764
    def transform(self, input_dict: dict) -> dict:
765
        """Private function to rotate, scale and translate bounding boxes and
766
767
768
769
770
771
772
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
773
            'pcd_scale_factor', 'pcd_trans' and `gt_bboxes_3d` are updated
jshilong's avatar
jshilong committed
774
            in the result dict.
775
        """
776
777
778
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
779
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
780

zhangwenwei's avatar
zhangwenwei committed
781
782
783
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
784

zhangwenwei's avatar
zhangwenwei committed
785
        self._trans_bbox_points(input_dict)
786
787

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
788
789
        return input_dict

790
    def __repr__(self) -> str:
791
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
792
        repr_str = self.__class__.__name__
793
794
795
796
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
797
798
799
        return repr_str


800
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
801
class PointShuffle(BaseTransform):
802
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
803

ZCMax's avatar
ZCMax committed
804
    def transform(self, input_dict: dict) -> dict:
805
806
807
808
809
810
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
811
            dict: Results after filtering, 'points', 'pts_instance_mask'
812
            and 'pts_semantic_mask' keys are updated in the result dict.
813
        """
814
815
816
817
818
819
820
821
822
823
824
825
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
826
827
        return input_dict

828
    def __repr__(self) -> str:
829
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
830
831
832
        return self.__class__.__name__


833
@TRANSFORMS.register_module()
834
class ObjectRangeFilter(BaseTransform):
835
836
    """Filter objects by the range.

837
838
839
840
841
842
843
844
    Required Keys:

    - gt_bboxes_3d

    Modified Keys:

    - gt_bboxes_3d

845
846
847
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
848

849
    def __init__(self, point_cloud_range: List[float]) -> None:
zhangwenwei's avatar
zhangwenwei committed
850
851
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)

852
853
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by the range.
854
855
856
857
858

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
859
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
860
            keys are updated in the result dict.
861
        """
862
863
864
865
866
867
868
        # Check points instance type and initialise bev_range
        if isinstance(input_dict['gt_bboxes_3d'],
                      (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
            bev_range = self.pcd_range[[0, 1, 3, 4]]
        elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
            bev_range = self.pcd_range[[0, 2, 3, 5]]

zhangwenwei's avatar
zhangwenwei committed
869
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
870
        gt_labels_3d = input_dict['gt_labels_3d']
871
        mask = gt_bboxes_3d.in_range_bev(bev_range)
zhangwenwei's avatar
zhangwenwei committed
872
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
873
874
875
876
877
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
878
879

        # limit rad to [-pi, pi]
880
881
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
882
883
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
884
885
        return input_dict

886
    def __repr__(self) -> str:
887
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
888
        repr_str = self.__class__.__name__
889
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
890
891
892
        return repr_str


893
@TRANSFORMS.register_module()
894
class PointsRangeFilter(BaseTransform):
895
896
    """Filter points by the range.

897
898
899
900
901
902
903
904
905
906
    Required Keys:

    - points
    - pts_instance_mask (optional)

    Modified Keys:

    - points
    - pts_instance_mask (optional)

907
908
909
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
910

911
    def __init__(self, point_cloud_range: List[float]) -> None:
912
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
913

914
915
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter points by the range.
916
917
918
919
920

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
921
            dict: Results after filtering, 'points', 'pts_instance_mask'
922
            and 'pts_semantic_mask' keys are updated in the result dict.
923
        """
zhangwenwei's avatar
zhangwenwei committed
924
        points = input_dict['points']
925
926
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
927
        input_dict['points'] = clean_points
928
929
930
931
932
933
934
935
936
937
938
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
939
940
        return input_dict

941
    def __repr__(self) -> str:
942
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
943
        repr_str = self.__class__.__name__
944
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
945
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
946
947


948
@TRANSFORMS.register_module()
949
class ObjectNameFilter(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
950
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
951

952
953
954
955
956
957
958
959
    Required Keys:

    - gt_labels_3d

    Modified Keys:

    - gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
960
    Args:
liyinhao's avatar
liyinhao committed
961
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
962
963
    """

964
    def __init__(self, classes: List[str]) -> None:
zhangwenwei's avatar
zhangwenwei committed
965
966
967
        self.classes = classes
        self.labels = list(range(len(self.classes)))

968
969
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by their names.
970
971
972
973
974

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
975
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
976
            keys are updated in the result dict.
977
        """
zhangwenwei's avatar
zhangwenwei committed
978
979
980
981
982
983
984
985
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

986
    def __repr__(self) -> str:
987
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
988
989
990
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
991
992


993
994
@TRANSFORMS.register_module()
class PointSample(BaseTransform):
995
    """Point sample.
wuyuefeng's avatar
wuyuefeng committed
996
997
998

    Sampling data to a certain number.

999
    Required Keys:
1000

1001
1002
1003
1004
1005
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

    Modified Keys:
1006

1007
1008
1009
1010
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

wuyuefeng's avatar
wuyuefeng committed
1011
1012
    Args:
        num_points (int): Number of points to be sampled.
1013
        sample_range (float, optional): The range where to sample points.
1014
1015
            If not None, the points with depth larger than `sample_range` are
            prior to be sampled. Defaults to None.
1016
1017
        replace (bool): Whether the sampling is with or without replacement.
            Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
1018
1019
    """

1020
1021
    def __init__(self,
                 num_points: int,
1022
1023
                 sample_range: Optional[float] = None,
                 replace: bool = False) -> None:
wuyuefeng's avatar
wuyuefeng committed
1024
        self.num_points = num_points
1025
1026
1027
        self.sample_range = sample_range
        self.replace = replace

1028
1029
1030
1031
1032
1033
1034
1035
    def _points_random_sampling(
        self,
        points: BasePoints,
        num_samples: int,
        sample_range: Optional[float] = None,
        replace: bool = False,
        return_choices: bool = False
    ) -> Union[Tuple[BasePoints, np.ndarray], BasePoints]:
wuyuefeng's avatar
wuyuefeng committed
1036
1037
1038
1039
1040
        """Points random sampling.

        Sample points to a certain number.

        Args:
1041
            points (:obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
1042
            num_samples (int): Number of samples to be sampled.
1043
            sample_range (float, optional): Indicating the range where the
1044
                points will be sampled. Defaults to None.
1045
            replace (bool): Sampling with or without replacement.
1046
                Defaults to False.
1047
            return_choices (bool): Whether return choice. Defaults to False.
1048

wuyuefeng's avatar
wuyuefeng committed
1049
        Returns:
1050
1051
1052
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:

                - points (:obj:`BasePoints`): 3D Points.
1053
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
1054
        """
1055
        if not replace:
wuyuefeng's avatar
wuyuefeng committed
1056
            replace = (points.shape[0] < num_samples)
1057
1058
1059
        point_range = range(len(points))
        if sample_range is not None and not replace:
            # Only sampling the near points when len(points) >= num_samples
1060
            dist = np.linalg.norm(points.coord.numpy(), axis=1)
1061
1062
            far_inds = np.where(dist >= sample_range)[0]
            near_inds = np.where(dist < sample_range)[0]
1063
1064
1065
1066
            # in case there are too many far points
            if len(far_inds) > num_samples:
                far_inds = np.random.choice(
                    far_inds, num_samples, replace=False)
1067
1068
1069
1070
1071
1072
1073
            point_range = near_inds
            num_samples -= len(far_inds)
        choices = np.random.choice(point_range, num_samples, replace=replace)
        if sample_range is not None and not replace:
            choices = np.concatenate((far_inds, choices))
            # Shuffle points after sampling
            np.random.shuffle(choices)
wuyuefeng's avatar
wuyuefeng committed
1074
1075
1076
1077
1078
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

1079
    def transform(self, input_dict: dict) -> dict:
1080
        """Transform function to sample points to in indoor scenes.
1081
1082
1083

        Args:
            input_dict (dict): Result dict from loading pipeline.
1084

1085
        Returns:
1086
            dict: Results after sampling, 'points', 'pts_instance_mask'
1087
            and 'pts_semantic_mask' keys are updated in the result dict.
1088
        """
1089
        points = input_dict['points']
1090
1091
1092
1093
1094
1095
        points, choices = self._points_random_sampling(
            points,
            self.num_points,
            self.sample_range,
            self.replace,
            return_choices=True)
1096
        input_dict['points'] = points
1097

1098
1099
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
wuyuefeng's avatar
wuyuefeng committed
1100

1101
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
1102
            pts_instance_mask = pts_instance_mask[choices]
1103
            input_dict['pts_instance_mask'] = pts_instance_mask
1104
1105
1106

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
1107
            input_dict['pts_semantic_mask'] = pts_semantic_mask
wuyuefeng's avatar
wuyuefeng committed
1108

1109
        return input_dict
wuyuefeng's avatar
wuyuefeng committed
1110

1111
    def __repr__(self) -> str:
1112
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
1113
        repr_str = self.__class__.__name__
1114
        repr_str += f'(num_points={self.num_points},'
1115
1116
        repr_str += f' sample_range={self.sample_range},'
        repr_str += f' replace={self.replace})'
1117

1118
1119
1120
        return repr_str


1121
@TRANSFORMS.register_module()
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
class IndoorPointSample(PointSample):
    """Indoor point sample.

    Sampling data to a certain number.
    NOTE: IndoorPointSample is deprecated in favor of PointSample

    Args:
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, *args, **kwargs):
        warnings.warn(
            'IndoorPointSample is deprecated in favor of PointSample')
        super(IndoorPointSample, self).__init__(*args, **kwargs)


1138
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1139
class IndoorPatchPointSample(BaseTransform):
1140
1141
1142
1143
1144
1145
1146
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
1147
        block_size (float): Size of a block to sample points from.
1148
1149
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
1150
1151
1152
            This parameter is unused in `IndoorPatchPointSample` and thus has
            been deprecated. We plan to remove it in the future.
            Defaults to None.
1153
1154
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
1155
            If not None, will be used as a patch selection criterion.
1156
            Defaults to None.
1157
        use_normalized_coord (bool): Whether to use normalized xyz as
1158
            additional features. Defaults to False.
1159
1160
1161
        num_try (int): Number of times to try if the patch selected is invalid.
            Defaults to 10.
        enlarge_size (float): Enlarge the sampled patch to
1162
            [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as
1163
            an augmentation. If None, set it as 0. Defaults to 0.2.
1164
        min_unique_num (int, optional): Minimum number of unique points
1165
1166
            the sampled patch should contain. If None, use PointNet++'s method
            to judge uniqueness. Defaults to None.
1167
        eps (float): A value added to patch boundary to guarantee
1168
            points coverage. Defaults to 1e-2.
1169
1170
1171

    Note:
        This transform should only be used in the training process of point
1172
1173
1174
        cloud segmentation tasks. For the sliding patch generation and
        inference process in testing, please refer to the `slide_inference`
        function of `EncoderDecoder3D` class.
1175
1176
1177
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
1178
1179
1180
1181
1182
1183
1184
1185
1186
                 num_points: int,
                 block_size: float = 1.5,
                 sample_rate: Optional[float] = None,
                 ignore_index: Optional[int] = None,
                 use_normalized_coord: bool = False,
                 num_try: int = 10,
                 enlarge_size: float = 0.2,
                 min_unique_num: Optional[int] = None,
                 eps: float = 1e-2) -> None:
1187
1188
1189
1190
1191
        self.num_points = num_points
        self.block_size = block_size
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try
1192
        self.enlarge_size = enlarge_size if enlarge_size is not None else 0.0
1193
        self.min_unique_num = min_unique_num
1194
        self.eps = eps
1195
1196
1197
1198
1199

        if sample_rate is not None:
            warnings.warn(
                "'sample_rate' has been deprecated and will be removed in "
                'the future. Please remove them from your code.')
1200

ZCMax's avatar
ZCMax committed
1201
1202
1203
1204
    def _input_generation(self, coords: np.ndarray, patch_center: np.ndarray,
                          coord_max: np.ndarray, attributes: np.ndarray,
                          attribute_dims: dict,
                          point_type: type) -> BasePoints:
1205
1206
        """Generating model input.

1207
        Generate input by subtracting patch center and adding additional
1208
1209
1210
1211
1212
1213
1214
1215
1216
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
1217
            point_type (type): class of input points inherited from BasePoints.
1218
1219

        Returns:
1220
            :obj:`BasePoints`: The generated input data.
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

1244
    def _patch_points_sampling(
1245
1246
            self, points: BasePoints,
            sem_mask: np.ndarray) -> Tuple[BasePoints, np.ndarray]:
1247
1248
1249
1250
1251
1252
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
1253
            points (:obj:`BasePoints`): 3D Points.
1254
1255
1256
            sem_mask (np.ndarray): semantic segmentation mask for input points.

        Returns:
1257
            tuple[:obj:`BasePoints`, np.ndarray]:
1258

1259
                - points (:obj:`BasePoints`): 3D Points.
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

1270
        for _ in range(self.num_try):
1271
1272
1273
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

1274
1275
            # boundary of a patch, which would be enlarged by
            # `self.enlarge_size` as an augmentation
1276
1277
1278
1279
1280
1281
1282
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
1283
1284
                (coords >= (cur_min - self.enlarge_size)) *
                (coords <= (cur_max + self.enlarge_size)),
1285
1286
1287
1288
1289
1290
1291
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]
1292
            point_idxs = np.where(cur_choice)[0]
1293
            mask = np.sum(
1294
1295
                (cur_coords >= (cur_min - self.eps)) * (cur_coords <=
                                                        (cur_max + self.eps)),
1296
                axis=1) == 3
1297

1298
1299
            # two criteria for patch sampling, adopted from PointNet++
            # 1. selected patch should contain enough unique points
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
            if self.min_unique_num is None:
                # use PointNet++'s method as default
                # [31, 31, 62] are just some big values used to transform
                # coords from 3d array to 1d and then check their uniqueness
                # this is used in all the ScanNet code following PointNet++
                vidx = np.ceil(
                    (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) *
                    np.array([31.0, 31.0, 62.0]))
                vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                                 vidx[:, 2])
                flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02
            else:
1312
                # if `min_unique_num` is provided, directly compare with it
1313
                flag1 = mask.sum() >= self.min_unique_num
1314

1315
            # 2. selected patch should contain enough annotated points
1316
1317
1318
1319
1320
1321
1322
1323
1324
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
        # sample idx to `self.num_points`
        if point_idxs.size >= self.num_points:
            # no duplicate in sub-sampling
            choices = np.random.choice(
                point_idxs, self.num_points, replace=False)
        else:
            # do not use random choice here to avoid some points not counted
            dup = np.random.choice(point_idxs.size,
                                   self.num_points - point_idxs.size)
            idx_dup = np.concatenate(
                [np.arange(point_idxs.size),
                 np.array(dup)], 0)
            choices = point_idxs[idx_dup]
1338
1339
1340
1341
1342
1343
1344
1345

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

ZCMax's avatar
ZCMax committed
1346
    def transform(self, input_dict: dict) -> dict:
1347
1348
1349
1350
1351
1352
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1353
            dict: Results after sampling, 'points', 'pts_instance_mask'
1354
            and 'pts_semantic_mask' keys are updated in the result dict.
1355
        """
ZCMax's avatar
ZCMax committed
1356
        points = input_dict['points']
1357

ZCMax's avatar
ZCMax committed
1358
        assert 'pts_semantic_mask' in input_dict.keys(), \
1359
            'semantic mask should be provided in training and evaluation'
ZCMax's avatar
ZCMax committed
1360
        pts_semantic_mask = input_dict['pts_semantic_mask']
1361
1362
1363
1364

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

ZCMax's avatar
ZCMax committed
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
        input_dict['points'] = points
        input_dict['pts_semantic_mask'] = pts_semantic_mask[choices]

        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in input_dict:
            input_dict['eval_ann_info']['pts_semantic_mask'] = \
                pts_semantic_mask[choices]

        pts_instance_mask = input_dict.get('pts_instance_mask', None)

1375
        if pts_instance_mask is not None:
ZCMax's avatar
ZCMax committed
1376
1377
1378
1379
1380
            input_dict['pts_instance_mask'] = pts_instance_mask[choices]
            # 'eval_ann_info' will be passed to evaluator
            if 'eval_ann_info' in input_dict:
                input_dict['eval_ann_info']['pts_instance_mask'] = \
                    pts_instance_mask[choices]
1381

ZCMax's avatar
ZCMax committed
1382
        return input_dict
1383

1384
    def __repr__(self) -> str:
1385
1386
1387
1388
1389
1390
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
1391
1392
        repr_str += f' num_try={self.num_try},'
        repr_str += f' enlarge_size={self.enlarge_size},'
1393
1394
        repr_str += f' min_unique_num={self.min_unique_num},'
        repr_str += f' eps={self.eps})'
wuyuefeng's avatar
wuyuefeng committed
1395
        return repr_str
1396
1397


1398
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1399
class BackgroundPointsFilter(BaseTransform):
1400
1401
1402
    """Filter background points near the bounding box.

    Args:
1403
        bbox_enlarge_range (tuple[float] | float): Bbox enlarge range.
1404
1405
    """

ZCMax's avatar
ZCMax committed
1406
    def __init__(self, bbox_enlarge_range: Union[Tuple[float], float]) -> None:
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

ZCMax's avatar
ZCMax committed
1417
    def transform(self, input_dict: dict) -> dict:
1418
1419
1420
1421
1422
1423
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1424
            dict: Results after filtering, 'points', 'pts_instance_mask'
1425
            and 'pts_semantic_mask' keys are updated in the result dict.
1426
1427
1428
1429
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

xiliu8006's avatar
xiliu8006 committed
1430
1431
1432
1433
        # avoid groundtruth being modified
        gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy()

1434
1435
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
xiliu8006's avatar
xiliu8006 committed
1436
        points_numpy = points.tensor.clone().numpy()
1437
1438
        foreground_masks = box_np_ops.points_in_rbbox(
            points_numpy, gt_bboxes_3d_np, origin=(0.5, 0.5, 0.5))
1439
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1440
            points_numpy, enlarged_gt_bboxes_3d, origin=(0.5, 0.5, 0.5))
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

1456
    def __repr__(self) -> str:
1457
1458
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1459
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1460
        return repr_str
1461
1462


1463
@TRANSFORMS.register_module()
1464
class VoxelBasedPointSampler(BaseTransform):
1465
1466
1467
1468
1469
1470
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
1471
1472
        prev_sweep_cfg (dict, optional): Config for sampling previous points.
            Defaults to None.
1473
        time_dim (int): Index that indicate the time dimension
1474
            for input points. Defaults to 3.
1475
1476
    """

1477
1478
1479
1480
    def __init__(self,
                 cur_sweep_cfg: dict,
                 prev_sweep_cfg: Optional[dict] = None,
                 time_dim: int = 3) -> None:
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

1493
    def _sample_points(self, points: np.ndarray, sampler: VoxelGenerator,
1494
                       point_dim: int) -> np.ndarray:
1495
1496
1497
1498
1499
1500
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
1501
            point_dim (int): The dimension of each points.
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

1520
    def transform(self, results: dict) -> dict:
1521
1522
1523
1524
1525
1526
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1527
            dict: Results after sampling, 'points', 'pts_instance_mask'
1528
            and 'pts_semantic_mask' keys are updated in the result dict.
1529
1530
1531
1532
1533
1534
1535
1536
1537
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1538
1539
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1540
1541
1542
1543
1544
1545
1546
1547
1548
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1549
        points_numpy = np.concatenate(extra_channel, axis=-1)
1550
1551
1552
1553
1554

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1555
1556
1557
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1558
1559
1560
1561
1562
1563
1564
1565
1566
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1567
                                               points_numpy.shape[1])
1568
1569
1570
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1571
                                                     points_numpy.shape[1])
1572

1573
1574
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1575
        else:
1576
            points_numpy = cur_sweep_points
1577
1578

        if self.cur_voxel_generator._max_num_points == 1:
1579
1580
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1581

1582
        # Restore the corresponding seg and mask fields
1583
        for key, dim_index in map_fields2dim:
1584
            results[key] = points_numpy[..., dim_index]
1585
1586
1587

        return results

1588
    def __repr__(self) -> str:
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str
1608
1609


1610
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1611
class AffineResize(BaseTransform):
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
    """Get the affine transform matrices to the target size.

    Different from :class:`RandomAffine` in MMDetection, this class can
    calculate the affine transform matrices while resizing the input image
    to a fixed size. The affine transform matrices include: 1) matrix
    transforming original image to the network input image size. 2) matrix
    transforming original image to the network output feature map size.

    Args:
        img_scale (tuple): Images scales for resizing.
        down_ratio (int): The down ratio of feature map.
            Actually the arg should be >= 1.
1624
        bbox_clip_border (bool): Whether clip the objects
1625
1626
1627
            outside the border of the image. Defaults to True.
    """

ZCMax's avatar
ZCMax committed
1628
1629
1630
1631
    def __init__(self,
                 img_scale: Tuple,
                 down_ratio: int,
                 bbox_clip_border: bool = True) -> None:
1632
1633
1634
1635
1636

        self.img_scale = img_scale
        self.down_ratio = down_ratio
        self.bbox_clip_border = bbox_clip_border

ZCMax's avatar
ZCMax committed
1637
    def transform(self, results: dict) -> dict:
1638
1639
1640
1641
1642
1643
1644
        """Call function to do affine transform to input image and labels.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after affine resize, 'affine_aug', 'trans_mat'
1645
            keys are added in the result dict.
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
        """
        # The results have gone through RandomShiftScale before AffineResize
        if 'center' not in results:
            img = results['img']
            height, width = img.shape[:2]
            center = np.array([width / 2, height / 2], dtype=np.float32)
            size = np.array([width, height], dtype=np.float32)
            results['affine_aug'] = False
        else:
            # The results did not go through RandomShiftScale before
            # AffineResize
            img = results['img']
            center = results['center']
            size = results['size']

        trans_affine = self._get_transform_matrix(center, size, self.img_scale)

        img = cv2.warpAffine(img, trans_affine[:2, :], self.img_scale)

        if isinstance(self.down_ratio, tuple):
            trans_mat = [
                self._get_transform_matrix(
                    center, size,
                    (self.img_scale[0] // ratio, self.img_scale[1] // ratio))
                for ratio in self.down_ratio
            ]  # (3, 3)
        else:
            trans_mat = self._get_transform_matrix(
                center, size, (self.img_scale[0] // self.down_ratio,
                               self.img_scale[1] // self.down_ratio))

        results['img'] = img
        results['img_shape'] = img.shape
        results['pad_shape'] = img.shape
        results['trans_mat'] = trans_mat

ZCMax's avatar
ZCMax committed
1682
1683
        if 'gt_bboxes' in results:
            self._affine_bboxes(results, trans_affine)
1684

ZCMax's avatar
ZCMax committed
1685
1686
        if 'centers_2d' in results:
            centers2d = self._affine_transform(results['centers_2d'],
1687
1688
1689
1690
1691
                                               trans_affine)
            valid_index = (centers2d[:, 0] >
                           0) & (centers2d[:, 0] <
                                 self.img_scale[0]) & (centers2d[:, 1] > 0) & (
                                     centers2d[:, 1] < self.img_scale[1])
ZCMax's avatar
ZCMax committed
1692
1693
1694
1695
            results['centers_2d'] = centers2d[valid_index]

            if 'gt_bboxes' in results:
                results['gt_bboxes'] = results['gt_bboxes'][valid_index]
1696
1697
1698
                if 'gt_bboxes_labels' in results:
                    results['gt_bboxes_labels'] = results['gt_bboxes_labels'][
                        valid_index]
ZCMax's avatar
ZCMax committed
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
                if 'gt_masks' in results:
                    raise NotImplementedError(
                        'AffineResize only supports bbox.')

            if 'gt_bboxes_3d' in results:
                results['gt_bboxes_3d'].tensor = results[
                    'gt_bboxes_3d'].tensor[valid_index]
                if 'gt_labels_3d' in results:
                    results['gt_labels_3d'] = results['gt_labels_3d'][
                        valid_index]
1709
1710
1711
1712
1713

            results['depths'] = results['depths'][valid_index]

        return results

ZCMax's avatar
ZCMax committed
1714
    def _affine_bboxes(self, results: dict, matrix: np.ndarray) -> None:
1715
1716
1717
1718
1719
1720
1721
1722
1723
        """Affine transform bboxes to input image.

        Args:
            results (dict): Result dict from loading pipeline.
            matrix (np.ndarray): Matrix transforming original
                image to the network input image size.
                shape: (3, 3)
        """

ZCMax's avatar
ZCMax committed
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
        bboxes = results['gt_bboxes']
        bboxes[:, :2] = self._affine_transform(bboxes[:, :2], matrix)
        bboxes[:, 2:] = self._affine_transform(bboxes[:, 2:], matrix)
        if self.bbox_clip_border:
            bboxes[:, [0, 2]] = bboxes[:, [0, 2]].clip(0,
                                                       self.img_scale[0] - 1)
            bboxes[:, [1, 3]] = bboxes[:, [1, 3]].clip(0,
                                                       self.img_scale[1] - 1)
        results['gt_bboxes'] = bboxes

    def _affine_transform(self, points: np.ndarray,
                          matrix: np.ndarray) -> np.ndarray:
1736
        """Affine transform bbox points to input image.
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753

        Args:
            points (np.ndarray): Points to be transformed.
                shape: (N, 2)
            matrix (np.ndarray): Affine transform matrix.
                shape: (3, 3)

        Returns:
            np.ndarray: Transformed points.
        """
        num_points = points.shape[0]
        hom_points_2d = np.concatenate((points, np.ones((num_points, 1))),
                                       axis=1)
        hom_points_2d = hom_points_2d.T
        affined_points = np.matmul(matrix, hom_points_2d).T
        return affined_points[:, :2]

ZCMax's avatar
ZCMax committed
1754
1755
    def _get_transform_matrix(self, center: Tuple, scale: Tuple,
                              output_scale: Tuple[float]) -> np.ndarray:
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
        """Get affine transform matrix.

        Args:
            center (tuple): Center of current image.
            scale (tuple): Scale of current image.
            output_scale (tuple[float]): The transform target image scales.

        Returns:
            np.ndarray: Affine transform matrix.
        """
        # TODO: further add rot and shift here.
        src_w = scale[0]
        dst_w = output_scale[0]
        dst_h = output_scale[1]

        src_dir = np.array([0, src_w * -0.5])
        dst_dir = np.array([0, dst_w * -0.5])

        src = np.zeros((3, 2), dtype=np.float32)
        dst = np.zeros((3, 2), dtype=np.float32)
        src[0, :] = center
        src[1, :] = center + src_dir
        dst[0, :] = np.array([dst_w * 0.5, dst_h * 0.5])
        dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir

        src[2, :] = self._get_ref_point(src[0, :], src[1, :])
        dst[2, :] = self._get_ref_point(dst[0, :], dst[1, :])

        get_matrix = cv2.getAffineTransform(src, dst)

        matrix = np.concatenate((get_matrix, [[0., 0., 1.]]))

        return matrix.astype(np.float32)

ZCMax's avatar
ZCMax committed
1790
1791
    def _get_ref_point(self, ref_point1: np.ndarray,
                       ref_point2: np.ndarray) -> np.ndarray:
1792
        """Get reference point to calculate affine transform matrix.
1793
1794

        While using opencv to calculate the affine matrix, we need at least
1795
        three corresponding points separately on original image and target
1796
1797
1798
1799
1800
1801
        image. Here we use two points to get the the third reference point.
        """
        d = ref_point1 - ref_point2
        ref_point3 = ref_point2 + np.array([-d[1], d[0]])
        return ref_point3

1802
    def __repr__(self) -> str:
1803
        """str: Return a string that describes the module."""
1804
1805
1806
1807
1808
1809
        repr_str = self.__class__.__name__
        repr_str += f'(img_scale={self.img_scale}, '
        repr_str += f'down_ratio={self.down_ratio}) '
        return repr_str


1810
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1811
class RandomShiftScale(BaseTransform):
1812
1813
1814
1815
    """Random shift scale.

    Different from the normal shift and scale function, it doesn't
    directly shift or scale image. It can record the shift and scale
1816
    infos into loading TRANSFORMS. It's designed to be used with
1817
1818
1819
1820
1821
1822
1823
    AffineResize together.

    Args:
        shift_scale (tuple[float]): Shift and scale range.
        aug_prob (float): The shifting and scaling probability.
    """

1824
    def __init__(self, shift_scale: Tuple[float], aug_prob: float) -> None:
1825
1826
1827
1828

        self.shift_scale = shift_scale
        self.aug_prob = aug_prob

ZCMax's avatar
ZCMax committed
1829
    def transform(self, results: dict) -> dict:
1830
1831
1832
1833
1834
1835
1836
        """Call function to record random shift and scale infos.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after random shift and scale, 'center', 'size'
1837
            and 'affine_aug' keys are added in the result dict.
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
        """
        img = results['img']

        height, width = img.shape[:2]

        center = np.array([width / 2, height / 2], dtype=np.float32)
        size = np.array([width, height], dtype=np.float32)

        if random.random() < self.aug_prob:
            shift, scale = self.shift_scale[0], self.shift_scale[1]
            shift_ranges = np.arange(-shift, shift + 0.1, 0.1)
            center[0] += size[0] * random.choice(shift_ranges)
            center[1] += size[1] * random.choice(shift_ranges)
            scale_ranges = np.arange(1 - scale, 1 + scale + 0.1, 0.1)
            size *= random.choice(scale_ranges)
            results['affine_aug'] = True
        else:
            results['affine_aug'] = False

        results['center'] = center
        results['size'] = size

        return results

1862
    def __repr__(self) -> str:
1863
        """str: Return a string that describes the module."""
1864
1865
1866
1867
        repr_str = self.__class__.__name__
        repr_str += f'(shift_scale={self.shift_scale}, '
        repr_str += f'aug_prob={self.aug_prob}) '
        return repr_str
1868
1869
1870
1871
1872


@TRANSFORMS.register_module()
class Resize3D(Resize):

1873
    def _resize_3d(self, results: dict) -> None:
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
        """Resize centers_2d and modify camera intrinisc with
        ``results['scale']``."""
        if 'centers_2d' in results:
            results['centers_2d'] *= results['scale_factor'][:2]
        results['cam2img'][0] *= np.array(results['scale_factor'][0])
        results['cam2img'][1] *= np.array(results['scale_factor'][1])

    def transform(self, results: dict) -> dict:
        """Transform function to resize images, bounding boxes, semantic
        segmentation map and keypoints.

        Args:
            results (dict): Result dict from loading pipeline.
1887

1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
        Returns:
            dict: Resized results, 'img', 'gt_bboxes', 'gt_seg_map',
            'gt_keypoints', 'scale', 'scale_factor', 'img_shape',
            and 'keep_ratio' keys are updated in result dict.
        """

        super(Resize3D, self).transform(results)
        self._resize_3d(results)
        return results


@TRANSFORMS.register_module()
class RandomResize3D(RandomResize):
    """The difference between RandomResize3D and RandomResize:

    1. Compared to RandomResize, this class would further
        check if scale is already set in results.
    2. During resizing, this class would modify the centers_2d
        and cam2img with ``results['scale']``.
    """

1909
    def _resize_3d(self, results: dict) -> None:
1910
1911
1912
1913
1914
1915
1916
        """Resize centers_2d and modify camera intrinisc with
        ``results['scale']``."""
        if 'centers_2d' in results:
            results['centers_2d'] *= results['scale_factor'][:2]
        results['cam2img'][0] *= np.array(results['scale_factor'][0])
        results['cam2img'][1] *= np.array(results['scale_factor'][1])

1917
    def transform(self, results: dict) -> dict:
1918
1919
        """Transform function to resize images, bounding boxes, masks, semantic
        segmentation map. Compared to RandomResize, this function would further
1920
1921
1922
1923
        check if scale is already set in results.

        Args:
            results (dict): Result dict from loading pipeline.
1924

1925
        Returns:
1926
1927
            dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor',
            'keep_ratio' keys are added into result dict.
1928
1929
1930
1931
1932
1933
1934
1935
        """
        if 'scale' not in results:
            results['scale'] = self._random_scale()
        self.resize.scale = results['scale']
        results = self.resize(results)
        self._resize_3d(results)

        return results
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988


@TRANSFORMS.register_module()
class RandomCrop3D(RandomCrop):
    """3D version of RandomCrop. RamdomCrop3D supports the modifications of
    camera intrinsic matrix and using predefined randomness variable to do the
    augmentation.

    The absolute ``crop_size`` is sampled based on ``crop_type`` and
    ``image_size``, then the cropped results are generated.

    Required Keys:

    - img
    - gt_bboxes (np.float32) (optional)
    - gt_bboxes_labels (np.int64) (optional)
    - gt_masks (BitmapMasks | PolygonMasks) (optional)
    - gt_ignore_flags (np.bool) (optional)
    - gt_seg_map (np.uint8) (optional)

    Modified Keys:

    - img
    - img_shape
    - gt_bboxes (optional)
    - gt_bboxes_labels (optional)
    - gt_masks (optional)
    - gt_ignore_flags (optional)
    - gt_seg_map (optional)

    Added Keys:

    - homography_matrix

    Args:
        crop_size (tuple): The relative ratio or absolute pixels of
            height and width.
        crop_type (str): One of "relative_range", "relative",
            "absolute", "absolute_range". "relative" randomly crops
            (h * crop_size[0], w * crop_size[1]) part from an input of size
            (h, w). "relative_range" uniformly samples relative crop size from
            range [crop_size[0], 1] and [crop_size[1], 1] for height and width
            respectively. "absolute" crops from an input with absolute size
            (crop_size[0], crop_size[1]). "absolute_range" uniformly samples
            crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w
            in range [crop_size[0], min(w, crop_size[1])].
            Defaults to "absolute".
        allow_negative_crop (bool): Whether to allow a crop that does
            not contain any bbox area. Defaults to False.
        recompute_bbox (bool): Whether to re-compute the boxes based
            on cropped instance masks. Defaults to False.
        bbox_clip_border (bool): Whether clip the objects outside
            the border of the image. Defaults to True.
1989
        rel_offset_h (tuple): The cropping interval of image height. Defaults
1990
            to (0., 1.).
1991
        rel_offset_w (tuple): The cropping interval of image width. Defaults
1992
1993
1994
1995
            to (0., 1.).

    Note:
        - If the image is smaller than the absolute crop size, return the
1996
          original image.
1997
1998
1999
2000
2001
2002
2003
2004
        - The keys for bboxes, labels and masks must be aligned. That is,
          ``gt_bboxes`` corresponds to ``gt_labels`` and ``gt_masks``, and
          ``gt_bboxes_ignore`` corresponds to ``gt_labels_ignore`` and
          ``gt_masks_ignore``.
        - If the crop does not contain any gt-bbox region and
          ``allow_negative_crop`` is set to False, skip this image.
    """

2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
    def __init__(
        self,
        crop_size: tuple,
        crop_type: str = 'absolute',
        allow_negative_crop: bool = False,
        recompute_bbox: bool = False,
        bbox_clip_border: bool = True,
        rel_offset_h: tuple = (0., 1.),
        rel_offset_w: tuple = (0., 1.)
    ) -> None:
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
        super().__init__(
            crop_size=crop_size,
            crop_type=crop_type,
            allow_negative_crop=allow_negative_crop,
            recompute_bbox=recompute_bbox,
            bbox_clip_border=bbox_clip_border)
        # rel_offset specifies the relative offset range of cropping origin
        # [0., 1.] means starting from 0*margin to 1*margin + 1
        self.rel_offset_h = rel_offset_h
        self.rel_offset_w = rel_offset_w

2026
2027
2028
2029
    def _crop_data(self,
                   results: dict,
                   crop_size: tuple,
                   allow_negative_crop: bool = False) -> dict:
2030
2031
2032
2033
2034
2035
2036
        """Function to randomly crop images, bounding boxes, masks, semantic
        segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.
            crop_size (tuple): Expected absolute size after cropping, (h, w).
            allow_negative_crop (bool): Whether to allow a crop that does not
2037
                contain any bbox area. Defaults to False.
2038
2039
2040

        Returns:
            dict: Randomly cropped results, 'img_shape' key in result dict is
2041
            updated according to crop size.
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
        """
        assert crop_size[0] > 0 and crop_size[1] > 0
        for key in results.get('img_fields', ['img']):
            img = results[key]
            if 'img_crop_offset' not in results:
                margin_h = max(img.shape[0] - crop_size[0], 0)
                margin_w = max(img.shape[1] - crop_size[1], 0)
                # TOCHECK: a little different from LIGA implementation
                offset_h = np.random.randint(
                    self.rel_offset_h[0] * margin_h,
                    self.rel_offset_h[1] * margin_h + 1)
                offset_w = np.random.randint(
                    self.rel_offset_w[0] * margin_w,
                    self.rel_offset_w[1] * margin_w + 1)
            else:
                offset_w, offset_h = results['img_crop_offset']

            crop_h = min(crop_size[0], img.shape[0])
            crop_w = min(crop_size[1], img.shape[1])
            crop_y1, crop_y2 = offset_h, offset_h + crop_h
            crop_x1, crop_x2 = offset_w, offset_w + crop_w

            # crop the image
            img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
            img_shape = img.shape
            results[key] = img
        results['img_shape'] = img_shape

        # crop bboxes accordingly and clip to the image boundary
        for key in results.get('bbox_fields', []):
            # e.g. gt_bboxes and gt_bboxes_ignore
            bbox_offset = np.array([offset_w, offset_h, offset_w, offset_h],
                                   dtype=np.float32)
            bboxes = results[key] - bbox_offset
            if self.bbox_clip_border:
                bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1])
                bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0])
            valid_inds = (bboxes[:, 2] > bboxes[:, 0]) & (
                bboxes[:, 3] > bboxes[:, 1])
            # If the crop does not contain any gt-bbox area and
            # allow_negative_crop is False, skip this image.
            if (key == 'gt_bboxes' and not valid_inds.any()
                    and not allow_negative_crop):
                return None
            results[key] = bboxes[valid_inds, :]
            # label fields. e.g. gt_labels and gt_labels_ignore
            label_key = self.bbox2label.get(key)
            if label_key in results:
                results[label_key] = results[label_key][valid_inds]

            # mask fields, e.g. gt_masks and gt_masks_ignore
            mask_key = self.bbox2mask.get(key)
            if mask_key in results:
                results[mask_key] = results[mask_key][
                    valid_inds.nonzero()[0]].crop(
                        np.asarray([crop_x1, crop_y1, crop_x2, crop_y2]))
                if self.recompute_bbox:
                    results[key] = results[mask_key].get_bboxes()

        # crop semantic seg
        for key in results.get('seg_fields', []):
            results[key] = results[key][crop_y1:crop_y2, crop_x1:crop_x2]

        # manipulate camera intrinsic matrix
        # needs to apply offset to K instead of P2 (on KITTI)
        if isinstance(results['cam2img'], list):
            # TODO ignore this, but should handle it in the future
            pass
        else:
            K = results['cam2img'][:3, :3].copy()
            inv_K = np.linalg.inv(K)
            T = np.matmul(inv_K, results['cam2img'][:3])
            K[0, 2] -= crop_x1
            K[1, 2] -= crop_y1
            offset_cam2img = np.matmul(K, T)
            results['cam2img'][:offset_cam2img.shape[0], :offset_cam2img.
                               shape[1]] = offset_cam2img

        results['img_crop_offset'] = [offset_w, offset_h]

        return results

2124
    def transform(self, results: dict) -> dict:
2125
2126
2127
2128
2129
2130
2131
2132
        """Transform function to randomly crop images, bounding boxes, masks,
        semantic segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Randomly cropped results, 'img_shape' key in result dict is
2133
            updated according to crop size.
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
        """
        image_size = results['img'].shape[:2]
        if 'crop_size' not in results:
            crop_size = self._get_crop_size(image_size)
            results['crop_size'] = crop_size
        else:
            crop_size = results['crop_size']
        results = self._crop_data(results, crop_size, self.allow_negative_crop)
        return results

2144
2145
    def __repr__(self) -> dict:
        """str: Return a string that describes the module."""
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
        repr_str = self.__class__.__name__
        repr_str += f'(crop_size={self.crop_size}, '
        repr_str += f'crop_type={self.crop_type}, '
        repr_str += f'allow_negative_crop={self.allow_negative_crop}, '
        repr_str += f'bbox_clip_border={self.bbox_clip_border}), '
        repr_str += f'rel_offset_h={self.rel_offset_h}), '
        repr_str += f'rel_offset_w={self.rel_offset_w})'
        return repr_str


@TRANSFORMS.register_module()
class PhotoMetricDistortion3D(PhotoMetricDistortion):
    """Apply photometric distortion to image sequentially, every transformation
    is applied with a probability of 0.5. The position of random contrast is in
    second or second to last.

    PhotoMetricDistortion3D further support using predefined randomness
    variable to do the augmentation.

    1. random brightness
    2. random contrast (mode 0)
    3. convert color from BGR to HSV
    4. random saturation
    5. random hue
    6. convert color from HSV to BGR
    7. random contrast (mode 1)
    8. randomly swap channels

    Required Keys:

    - img (np.uint8)

    Modified Keys:

    - img (np.float32)

    Args:
        brightness_delta (int): delta of brightness.
        contrast_range (sequence): range of contrast.
        saturation_range (sequence): range of saturation.
        hue_delta (int): delta of hue.
    """

    def transform(self, results: dict) -> dict:
        """Transform function to perform photometric distortion on images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with images distorted.
        """
        assert 'img' in results, '`img` is not found in results'
        img = results['img']
        img = img.astype(np.float32)
        if 'photometric_param' not in results:
            photometric_param = self._random_flags()
            results['photometric_param'] = photometric_param
        else:
            photometric_param = results['photometric_param']

        (mode, brightness_flag, contrast_flag, saturation_flag, hue_flag,
         swap_flag, delta_value, alpha_value, saturation_value, hue_value,
         swap_value) = photometric_param

        # random brightness
        if brightness_flag:
            img += delta_value

        # mode == 0 --> do random contrast first
        # mode == 1 --> do random contrast last
        if mode == 1:
            if contrast_flag:
                img *= alpha_value

        # convert color from BGR to HSV
        img = mmcv.bgr2hsv(img)

        # random saturation
        if saturation_flag:
            img[..., 1] *= saturation_value

        # random hue
        if hue_flag:
            img[..., 0] += hue_value
            img[..., 0][img[..., 0] > 360] -= 360
            img[..., 0][img[..., 0] < 0] += 360

        # convert color from HSV to BGR
        img = mmcv.hsv2bgr(img)

        # random contrast
        if mode == 0:
            if contrast_flag:
                img *= alpha_value

        # randomly swap channels
        if swap_flag:
            img = img[..., swap_value]

        results['img'] = img
        return results


@TRANSFORMS.register_module()
2251
class MultiViewWrapper(BaseTransform):
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
    """Wrap transformation from single-view into multi-view.

    The wrapper processes the images from multi-view one by one. For each
    image, it constructs a pseudo dict according to the keys specified by the
    'process_fields' parameter. After the transformation is finished, desired
    information can be collected by specifying the keys in the 'collected_keys'
    parameter. Multi-view images share the same transformation parameters
    but do not share the same magnitude when a random transformation is
    conducted.

    Args:
        transforms (list[dict]): A list of dict specifying the transformations
            for the monocular situation.
        override_aug_config (bool): flag of whether to use the same aug config
2266
            for multiview image. Defaults to True.
2267
        process_fields (list): Desired keys that the transformations should
2268
            be conducted on. Defaults to ['img', 'cam2img', 'lidar2cam'].
2269
        collected_keys (list): Collect information in transformation
2270
            like rotate angles, crop roi, and flip state. Defaults to
2271
2272
2273
2274
                ['scale', 'scale_factor', 'crop',
                 'crop_offset', 'ori_shape',
                 'pad_shape', 'img_shape',
                 'pad_fixed_size', 'pad_size_divisor',
2275
                 'flip', 'flip_direction', 'rotate'].
2276
        randomness_keys (list): The keys that related to the randomness
2277
            in transformation. Defaults to
2278
2279
2280
2281
                    ['scale', 'scale_factor', 'crop_size', 'flip',
                     'flip_direction', 'photometric_param']
    """

2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
    def __init__(
        self,
        transforms: dict,
        override_aug_config: bool = True,
        process_fields: list = ['img', 'cam2img', 'lidar2cam'],
        collected_keys: list = [
            'scale', 'scale_factor', 'crop', 'img_crop_offset', 'ori_shape',
            'pad_shape', 'img_shape', 'pad_fixed_size', 'pad_size_divisor',
            'flip', 'flip_direction', 'rotate'
        ],
        randomness_keys: list = [
            'scale', 'scale_factor', 'crop_size', 'img_crop_offset', 'flip',
            'flip_direction', 'photometric_param'
        ]
    ) -> None:
2297
        self.transforms = Compose(transforms)
2298
2299
2300
2301
2302
        self.override_aug_config = override_aug_config
        self.collected_keys = collected_keys
        self.process_fields = process_fields
        self.randomness_keys = randomness_keys

2303
    def transform(self, input_dict: dict) -> dict:
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
        """Transform function to do the transform for multiview image.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: output dict after transformtaion
        """
        # store the augmentation related keys for each image.
        for key in self.collected_keys:
            if key not in input_dict or \
                    not isinstance(input_dict[key], list):
                input_dict[key] = []
        prev_process_dict = {}
        for img_id in range(len(input_dict['img'])):
            process_dict = {}

            # override the process dict (e.g. scale in random scale,
            # crop_size in random crop, flip, flip_direction in
            # random flip)
            if img_id != 0 and self.override_aug_config:
                for key in self.randomness_keys:
                    if key in prev_process_dict:
                        process_dict[key] = prev_process_dict[key]

            for key in self.process_fields:
                if key in input_dict:
                    process_dict[key] = input_dict[key][img_id]
2332
            process_dict = self.transforms(process_dict)
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
            # store the randomness variable in transformation.
            prev_process_dict = process_dict

            # store the related results to results_dict
            for key in self.process_fields:
                if key in process_dict:
                    input_dict[key][img_id] = process_dict[key]
            # update the keys
            for key in self.collected_keys:
                if key in process_dict:
                    if len(input_dict[key]) == img_id + 1:
                        input_dict[key][img_id] = process_dict[key]
                    else:
                        input_dict[key].append(process_dict[key])

        for key in self.collected_keys:
            if len(input_dict[key]) == 0:
                input_dict.pop(key)
        return input_dict