transforms_3d.py 88 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import random
3
import warnings
4
from typing import List, Optional, Tuple, Union
5
6

import cv2
7
import mmcv
8
import numpy as np
9
from mmcv.transforms import BaseTransform, Compose, RandomResize, Resize
10
11
from mmdet.datasets.transforms import (PhotoMetricDistortion, RandomCrop,
                                       RandomFlip)
12
from mmengine import is_tuple_of
zhangwenwei's avatar
zhangwenwei committed
13

zhangshilong's avatar
zhangshilong committed
14
from mmdet3d.models.task_modules import VoxelGenerator
15
from mmdet3d.registry import TRANSFORMS
zhangshilong's avatar
zhangshilong committed
16
17
18
19
from mmdet3d.structures import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                                LiDARInstance3DBoxes)
from mmdet3d.structures.ops import box_np_ops
from mmdet3d.structures.points import BasePoints
zhangwenwei's avatar
zhangwenwei committed
20
21
22
from .data_augment_utils import noise_per_object_v3_


23
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
24
class RandomDropPointsColor(BaseTransform):
25
26
27
28
29
30
31
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
32
        drop_ratio (float): The probability of dropping point colors.
33
34
35
            Defaults to 0.2.
    """

ZCMax's avatar
ZCMax committed
36
    def __init__(self, drop_ratio: float = 0.2) -> None:
37
38
39
40
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

ZCMax's avatar
ZCMax committed
41
    def transform(self, input_dict: dict) -> dict:
42
43
44
45
46
47
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
48
49
            dict: Results after color dropping, 'points' key is updated
            in the result dict.
50
51
52
53
54
55
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

56
57
58
59
60
61
62
        # this if-expression is a bit strange
        # `RandomDropPointsColor` is used in training 3D segmentor PAConv
        # we discovered in our experiments that, using
        # `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to
        # better results than using `if np.random.rand() < self.drop_ratio`
        # so we keep this hack in our codebase
        if np.random.rand() > 1.0 - self.drop_ratio:
63
64
65
            points.color = points.color * 0.0
        return input_dict

66
    def __repr__(self) -> str:
67
68
69
70
71
72
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


73
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
74
75
76
77
78
79
80
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

jshilong's avatar
jshilong committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
99
    Args:
100
        sync_2d (bool): Whether to apply flip according to the 2D
zhangwenwei's avatar
zhangwenwei committed
101
102
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
103
            to that of 2D images. Defaults to True.
104
        flip_ratio_bev_horizontal (float): The flipping probability
liyinhao's avatar
liyinhao committed
105
            in horizontal direction. Defaults to 0.0.
106
        flip_ratio_bev_vertical (float): The flipping probability
liyinhao's avatar
liyinhao committed
107
            in vertical direction. Defaults to 0.0.
108
109
        flip_box3d (bool): Whether to flip bounding box. In most of the case,
            the box should be fliped. In cam-based bev detection, this is set
110
111
            to False, since the flip of 2D images does not influence the 3D
            box. Defaults to True.
zhangwenwei's avatar
zhangwenwei committed
112
113
    """

wuyuefeng's avatar
wuyuefeng committed
114
    def __init__(self,
jshilong's avatar
jshilong committed
115
116
117
                 sync_2d: bool = True,
                 flip_ratio_bev_horizontal: float = 0.0,
                 flip_ratio_bev_vertical: float = 0.0,
118
                 flip_box3d: bool = True,
jshilong's avatar
jshilong committed
119
120
121
122
                 **kwargs) -> None:
        # `flip_ratio_bev_horizontal` is equal to
        # for flip prob of 2d image when
        # `sync_2d` is True
wuyuefeng's avatar
wuyuefeng committed
123
        super(RandomFlip3D, self).__init__(
jshilong's avatar
jshilong committed
124
            prob=flip_ratio_bev_horizontal, direction='horizontal', **kwargs)
zhangwenwei's avatar
zhangwenwei committed
125
        self.sync_2d = sync_2d
jshilong's avatar
jshilong committed
126
        self.flip_ratio_bev_horizontal = flip_ratio_bev_horizontal
wuyuefeng's avatar
wuyuefeng committed
127
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
128
        self.flip_box3d = flip_box3d
wuyuefeng's avatar
wuyuefeng committed
129
130
131
132
133
134
135
136
137
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

jshilong's avatar
jshilong committed
138
139
140
    def random_flip_data_3d(self,
                            input_dict: dict,
                            direction: str = 'horizontal') -> None:
141
142
        """Flip 3D data randomly.

jshilong's avatar
jshilong committed
143
144
145
146
147
148
149
        `random_flip_data_3d` should take these situations into consideration:

        - 1. LIDAR-based 3d detection
        - 2. LIDAR-based 3d segmentation
        - 3. vision-only detection
        - 4. multi-modality 3d detection.

150
151
        Args:
            input_dict (dict): Result dict from loading pipeline.
152
            direction (str): Flip direction. Defaults to 'horizontal'.
153
154

        Returns:
155
            dict: Flipped results, 'points', 'bbox3d_fields' keys are
156
            updated in the result dict.
157
        """
wuyuefeng's avatar
wuyuefeng committed
158
        assert direction in ['horizontal', 'vertical']
159
160
161
162
163
164
165
166
        if self.flip_box3d:
            if 'gt_bboxes_3d' in input_dict:
                if 'points' in input_dict:
                    input_dict['points'] = input_dict['gt_bboxes_3d'].flip(
                        direction, points=input_dict['points'])
                else:
                    # vision-only detection
                    input_dict['gt_bboxes_3d'].flip(direction)
167
            else:
168
                input_dict['points'].flip(direction)
jshilong's avatar
jshilong committed
169
170

        if 'centers_2d' in input_dict:
171
172
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
173
            w = input_dict['img_shape'][1]
jshilong's avatar
jshilong committed
174
175
            input_dict['centers_2d'][..., 0] = \
                w - input_dict['centers_2d'][..., 0]
176
177
            # need to modify the horizontal position of camera center
            # along u-axis in the image (flip like centers2d)
178
            # ['cam2img'][0][2] = c_u
179
180
            # see more details and examples at
            # https://github.com/open-mmlab/mmdetection3d/pull/744
181
            input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2]
zhangwenwei's avatar
zhangwenwei committed
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    def _flip_on_direction(self, results: dict) -> None:
        """Function to flip images, bounding boxes, semantic segmentation map
        and keypoints.

        Add the override feature that if 'flip' is already in results, use it
        to do the augmentation.
        """
        if 'flip' not in results:
            cur_dir = self._choose_direction()
        else:
            cur_dir = results['flip_direction']
        if cur_dir is None:
            results['flip'] = False
            results['flip_direction'] = None
        else:
            results['flip'] = True
            results['flip_direction'] = cur_dir
            self._flip(results)

jshilong's avatar
jshilong committed
202
    def transform(self, input_dict: dict) -> dict:
203
        """Call function to flip points, values in the ``bbox3d_fields`` and
204
205
206
207
208
209
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
210
            dict: Flipped results, 'flip', 'flip_direction',
211
212
            'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added
            into result dict.
213
        """
214
        # flip 2D image and its annotations
jshilong's avatar
jshilong committed
215
216
        if 'img' in input_dict:
            super(RandomFlip3D, self).transform(input_dict)
zhangwenwei's avatar
zhangwenwei committed
217

jshilong's avatar
jshilong committed
218
        if self.sync_2d and 'img' in input_dict:
wuyuefeng's avatar
wuyuefeng committed
219
220
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
221
        else:
wuyuefeng's avatar
wuyuefeng committed
222
223
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
jshilong's avatar
jshilong committed
224
                ) < self.flip_ratio_bev_horizontal else False
wuyuefeng's avatar
wuyuefeng committed
225
226
227
228
229
230
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

231
232
233
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
234
235
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
236
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
237
238
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
239
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
240
241
        return input_dict

242
    def __repr__(self) -> str:
243
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
244
        repr_str = self.__class__.__name__
245
        repr_str += f'(sync_2d={self.sync_2d},'
246
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
247
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
248

zhangwenwei's avatar
zhangwenwei committed
249

250
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
251
class RandomJitterPoints(BaseTransform):
252
253
    """Randomly jitter point coordinates.

254
    Different from the global translation in ``GlobalRotScaleTrans``, here we
255
    apply different noises to each point in a scene.
256
257
258

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
259
260
            This applies random noise to all points in a 3D scene, which is
            sampled from a gaussian distribution whose standard deviation is
261
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
262
        clip_range (list[float]): Clip the randomly generated jitter
263
264
265
266
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
267
        This transform should only be used in point cloud segmentation tasks
268
        because we don't transform ground-truth bboxes accordingly.
269
270
271
272
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
273
274
                 jitter_std: List[float] = [0.01, 0.01, 0.01],
                 clip_range: List[float] = [-0.05, 0.05]) -> None:
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

ZCMax's avatar
ZCMax committed
289
    def transform(self, input_dict: dict) -> dict:
290
291
292
293
294
295
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
296
            dict: Results after adding noise to each point,
297
            'points' key is updated in the result dict.
298
299
300
301
302
303
304
305
306
307
308
309
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

310
    def __repr__(self) -> str:
311
312
313
314
315
316
317
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


318
319
@TRANSFORMS.register_module()
class ObjectSample(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
320
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
321

322
323
324
325
326
327
328
329
330
331
    Required Keys:

    - points
    - ann_info
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Modified Keys:
332

333
334
335
336
337
338
339
340
341
342
    - points
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Added Keys:

    - plane (optional)

zhangwenwei's avatar
zhangwenwei committed
343
344
    Args:
        db_sampler (dict): Config dict of the database sampler.
345
        sample_2d (bool): Whether to also paste 2D image patch to the images.
zhangwenwei's avatar
zhangwenwei committed
346
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
347
            Defaults to False.
348
        use_ground_plane (bool): Whether to use ground plane to adjust the
349
            3D labels. Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
350
    """
zhangwenwei's avatar
zhangwenwei committed
351

352
353
354
    def __init__(self,
                 db_sampler: dict,
                 sample_2d: bool = False,
355
                 use_ground_plane: bool = False) -> None:
zhangwenwei's avatar
zhangwenwei committed
356
357
358
359
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
360
        self.db_sampler = TRANSFORMS.build(db_sampler)
361
        self.use_ground_plane = use_ground_plane
362
        self.disabled = False
zhangwenwei's avatar
zhangwenwei committed
363
364

    @staticmethod
365
366
    def remove_points_in_boxes(points: BasePoints,
                               boxes: np.ndarray) -> np.ndarray:
367
368
369
        """Remove the points in the sampled bounding boxes.

        Args:
370
            points (:obj:`BasePoints`): Input point cloud array.
371
372
373
374
375
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
376
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
377
378
379
        points = points[np.logical_not(masks.any(-1))]
        return points

380
381
    def transform(self, input_dict: dict) -> dict:
        """Transform function to sample ground truth objects to the data.
382
383
384
385
386

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
387
            dict: Results after object sampling augmentation,
388
389
            'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated
            in the result dict.
390
        """
391
392
393
        if self.disabled:
            return input_dict

zhangwenwei's avatar
zhangwenwei committed
394
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
395
396
        gt_labels_3d = input_dict['gt_labels_3d']

ChaimZhu's avatar
ChaimZhu committed
397
398
        if self.use_ground_plane:
            ground_plane = input_dict.get('plane', None)
399
400
            assert ground_plane is not None, '`use_ground_plane` is True ' \
                                             'but find plane is None'
401
402
        else:
            ground_plane = None
zhangwenwei's avatar
zhangwenwei committed
403
404
405
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
406
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
407
408
409
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
410
411
412
413
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
414
415
        else:
            sampled_dict = self.db_sampler.sample_all(
416
417
418
419
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                img=None,
                ground_plane=ground_plane)
zhangwenwei's avatar
zhangwenwei committed
420
421
422
423

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
424
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
425

zhangwenwei's avatar
zhangwenwei committed
426
427
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
428
429
430
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
431

zhangwenwei's avatar
zhangwenwei committed
432
433
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
434
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
435
436
437
438
439

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
440

zhangwenwei's avatar
zhangwenwei committed
441
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
442
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
443
444

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
WRH's avatar
WRH committed
445
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.int64)
zhangwenwei's avatar
zhangwenwei committed
446
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
447

zhangwenwei's avatar
zhangwenwei committed
448
449
        return input_dict

450
    def __repr__(self) -> str:
451
        """str: Return a string that describes the module."""
452
        repr_str = self.__class__.__name__
453
        repr_str += f'(db_sampler={self.db_sampler},'
454
        repr_str += f' sample_2d={self.sample_2d},'
455
        repr_str += f' use_ground_plane={self.use_ground_plane})'
456
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
457
458


459
460
@TRANSFORMS.register_module()
class ObjectNoise(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
461
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
462

463
464
465
466
467
468
469
470
471
472
    Required Keys:

    - points
    - gt_bboxes_3d

    Modified Keys:

    - points
    - gt_bboxes_3d

zhangwenwei's avatar
zhangwenwei committed
473
    Args:
474
        translation_std (list[float]): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
475
476
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
477
        global_rot_range (list[float]): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
478
            Defaults to [0.0, 0.0].
479
        rot_range (list[float]): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
480
            Defaults to [-0.15707963267, 0.15707963267].
481
482
        num_try (int): Number of times to try if the noise applied is invalid.
            Defaults to 100.
zhangwenwei's avatar
zhangwenwei committed
483
    """
zhangwenwei's avatar
zhangwenwei committed
484
485

    def __init__(self,
486
487
488
489
                 translation_std: List[float] = [0.25, 0.25, 0.25],
                 global_rot_range: List[float] = [0.0, 0.0],
                 rot_range: List[float] = [-0.15707963267, 0.15707963267],
                 num_try: int = 100) -> None:
zhangwenwei's avatar
zhangwenwei committed
490
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
491
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
492
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
493
494
        self.num_try = num_try

495
496
    def transform(self, input_dict: dict) -> dict:
        """Transform function to apply noise to each ground truth in the scene.
497
498
499
500
501

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
502
            dict: Results after adding noise to each object,
503
            'points', 'gt_bboxes_3d' keys are updated in the result dict.
504
        """
zhangwenwei's avatar
zhangwenwei committed
505
506
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
507

508
        # TODO: this is inplace operation
509
        numpy_box = gt_bboxes_3d.tensor.numpy()
510
511
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
512
        noise_per_object_v3_(
513
            numpy_box,
514
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
515
516
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
517
518
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
519
520

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
521
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
522
523
        return input_dict

524
    def __repr__(self) -> str:
525
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
526
        repr_str = self.__class__.__name__
527
528
529
530
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
531
532
533
        return repr_str


534
@TRANSFORMS.register_module()
535
class GlobalAlignment(BaseTransform):
536
537
538
539
540
541
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
542
        We do not record the applied rotation and translation as in
543
544
        GlobalRotScaleTrans. Because usually, we do not need to reverse
        the alignment step.
545
        For example, ScanNet 3D detection task uses aligned ground-truth
546
        bounding boxes for evaluation.
547
548
    """

549
    def __init__(self, rotation_axis: int) -> None:
550
551
        self.rotation_axis = rotation_axis

552
    def _trans_points(self, results: dict, trans_factor: np.ndarray) -> None:
553
554
555
556
557
558
559
560
561
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
562
        results['points'].translate(trans_factor)
563

564
    def _rot_points(self, results: dict, rot_mat: np.ndarray) -> None:
565
566
567
568
569
570
571
572
573
574
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
575
        results['points'].rotate(rot_mat.T)
576

577
    def _check_rot_mat(self, rot_mat: np.ndarray) -> None:
578
579
580
581
582
583
584
585
586
587
588
589
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

590
    def transform(self, results: dict) -> dict:
591
592
593
594
595
596
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
597
            dict: Results after global alignment, 'points' and keys in
598
            input_dict['bbox3d_fields'] are updated in the result dict.
599
        """
600
        assert 'axis_align_matrix' in results, \
601
602
            'axis_align_matrix is not provided in GlobalAlignment'

603
        axis_align_matrix = results['axis_align_matrix']
604
605
606
607
608
609
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
610
611
        self._rot_points(results, rot_mat)
        self._trans_points(results, trans_vec)
612

613
        return results
614

615
    def __repr__(self) -> str:
616
        """str: Return a string that describes the module."""
617
618
619
620
621
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


622
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
623
class GlobalRotScaleTrans(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
624
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
625

jshilong's avatar
jshilong committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
644
    Args:
645
        rot_range (list[float]): Range of rotation angle.
liyinhao's avatar
liyinhao committed
646
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
647
        scale_ratio_range (list[float]): Range of scale ratio.
liyinhao's avatar
liyinhao committed
648
            Defaults to [0.95, 1.05].
649
        translation_std (list[float]): The standard deviation of
650
            translation noise applied to a scene, which
zhangwenwei's avatar
zhangwenwei committed
651
            is sampled from a gaussian distribution whose standard deviation
652
653
            is set by ``translation_std``. Defaults to [0, 0, 0].
        shift_height (bool): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
654
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
655
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
656
    """
zhangwenwei's avatar
zhangwenwei committed
657
658

    def __init__(self,
jshilong's avatar
jshilong committed
659
660
661
662
                 rot_range: List[float] = [-0.78539816, 0.78539816],
                 scale_ratio_range: List[float] = [0.95, 1.05],
                 translation_std: List[int] = [0, 0, 0],
                 shift_height: bool = False) -> None:
663
664
665
666
667
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
668
        self.rot_range = rot_range
669
670
671

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
jshilong's avatar
jshilong committed
672

zhangwenwei's avatar
zhangwenwei committed
673
        self.scale_ratio_range = scale_ratio_range
674
675
676
677
678
679
680

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
681
682
        assert all([std >= 0 for std in translation_std]), \
            'translation_std should be positive'
zhangwenwei's avatar
zhangwenwei committed
683
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
684
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
685

jshilong's avatar
jshilong committed
686
    def _trans_bbox_points(self, input_dict: dict) -> None:
687
688
689
690
691
692
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
693
            dict: Results after translation, 'points', 'pcd_trans'
694
            and `gt_bboxes_3d` is updated in the result dict.
695
        """
696
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
697
698
        trans_factor = np.random.normal(scale=translation_std, size=3).T

699
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
700
        input_dict['pcd_trans'] = trans_factor
jshilong's avatar
jshilong committed
701
702
        if 'gt_bboxes_3d' in input_dict:
            input_dict['gt_bboxes_3d'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
703

jshilong's avatar
jshilong committed
704
    def _rot_bbox_points(self, input_dict: dict) -> None:
705
706
707
708
709
710
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
711
            dict: Results after rotation, 'points', 'pcd_rotation'
712
            and `gt_bboxes_3d` is updated in the result dict.
713
        """
zhangwenwei's avatar
zhangwenwei committed
714
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
715
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
716

jshilong's avatar
jshilong committed
717
718
719
720
721
722
723
724
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            # rotate points with bboxes
            points, rot_mat_T = input_dict['gt_bboxes_3d'].rotate(
                noise_rotation, input_dict['points'])
            input_dict['points'] = points
        else:
            # if no bbox in input_dict, only rotate points
725
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
jshilong's avatar
jshilong committed
726
727
728
729
730

        input_dict['pcd_rotation'] = rot_mat_T
        input_dict['pcd_rotation_angle'] = noise_rotation

    def _scale_bbox_points(self, input_dict: dict) -> None:
731
732
733
734
735
736
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
737
            dict: Results after scaling, 'points' and
738
            `gt_bboxes_3d` is updated in the result dict.
739
        """
zhangwenwei's avatar
zhangwenwei committed
740
        scale = input_dict['pcd_scale_factor']
741
742
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
743
        if self.shift_height:
744
745
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
746
747
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
748

jshilong's avatar
jshilong committed
749
750
751
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            input_dict['gt_bboxes_3d'].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
752

jshilong's avatar
jshilong committed
753
    def _random_scale(self, input_dict: dict) -> None:
754
755
756
757
758
759
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
760
761
            dict: Results after scaling, 'pcd_scale_factor'
            are updated in the result dict.
762
        """
zhangwenwei's avatar
zhangwenwei committed
763
764
765
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
766

jshilong's avatar
jshilong committed
767
    def transform(self, input_dict: dict) -> dict:
768
        """Private function to rotate, scale and translate bounding boxes and
769
770
771
772
773
774
775
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
776
            'pcd_scale_factor', 'pcd_trans' and `gt_bboxes_3d` are updated
jshilong's avatar
jshilong committed
777
            in the result dict.
778
        """
779
780
781
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
782
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
783

zhangwenwei's avatar
zhangwenwei committed
784
785
786
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
787

zhangwenwei's avatar
zhangwenwei committed
788
        self._trans_bbox_points(input_dict)
789
790

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
791
792
        return input_dict

793
    def __repr__(self) -> str:
794
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
795
        repr_str = self.__class__.__name__
796
797
798
799
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
800
801
802
        return repr_str


803
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
804
class PointShuffle(BaseTransform):
805
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
806

ZCMax's avatar
ZCMax committed
807
    def transform(self, input_dict: dict) -> dict:
808
809
810
811
812
813
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
814
            dict: Results after filtering, 'points', 'pts_instance_mask'
815
            and 'pts_semantic_mask' keys are updated in the result dict.
816
        """
817
818
819
820
821
822
823
824
825
826
827
828
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
829
830
        return input_dict

831
    def __repr__(self) -> str:
832
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
833
834
835
        return self.__class__.__name__


836
@TRANSFORMS.register_module()
837
class ObjectRangeFilter(BaseTransform):
838
839
    """Filter objects by the range.

840
841
842
843
844
845
846
847
    Required Keys:

    - gt_bboxes_3d

    Modified Keys:

    - gt_bboxes_3d

848
849
850
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
851

852
    def __init__(self, point_cloud_range: List[float]) -> None:
zhangwenwei's avatar
zhangwenwei committed
853
854
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)

855
856
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by the range.
857
858
859
860
861

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
862
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
863
            keys are updated in the result dict.
864
        """
865
866
867
868
869
870
871
        # Check points instance type and initialise bev_range
        if isinstance(input_dict['gt_bboxes_3d'],
                      (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
            bev_range = self.pcd_range[[0, 1, 3, 4]]
        elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
            bev_range = self.pcd_range[[0, 2, 3, 5]]

zhangwenwei's avatar
zhangwenwei committed
872
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
873
        gt_labels_3d = input_dict['gt_labels_3d']
874
        mask = gt_bboxes_3d.in_range_bev(bev_range)
zhangwenwei's avatar
zhangwenwei committed
875
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
876
877
878
879
880
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
881
882

        # limit rad to [-pi, pi]
883
884
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
885
886
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
887
888
        return input_dict

889
    def __repr__(self) -> str:
890
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
891
        repr_str = self.__class__.__name__
892
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
893
894
895
        return repr_str


896
@TRANSFORMS.register_module()
897
class PointsRangeFilter(BaseTransform):
898
899
    """Filter points by the range.

900
901
902
903
904
905
906
907
908
909
    Required Keys:

    - points
    - pts_instance_mask (optional)

    Modified Keys:

    - points
    - pts_instance_mask (optional)

910
911
912
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
913

914
    def __init__(self, point_cloud_range: List[float]) -> None:
915
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
916

917
918
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter points by the range.
919
920
921
922
923

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
924
            dict: Results after filtering, 'points', 'pts_instance_mask'
925
            and 'pts_semantic_mask' keys are updated in the result dict.
926
        """
zhangwenwei's avatar
zhangwenwei committed
927
        points = input_dict['points']
928
929
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
930
        input_dict['points'] = clean_points
931
932
933
934
935
936
937
938
939
940
941
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
942
943
        return input_dict

944
    def __repr__(self) -> str:
945
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
946
        repr_str = self.__class__.__name__
947
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
948
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
949
950


951
@TRANSFORMS.register_module()
952
class ObjectNameFilter(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
953
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
954

955
956
957
958
959
960
961
962
    Required Keys:

    - gt_labels_3d

    Modified Keys:

    - gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
963
    Args:
liyinhao's avatar
liyinhao committed
964
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
965
966
    """

967
    def __init__(self, classes: List[str]) -> None:
zhangwenwei's avatar
zhangwenwei committed
968
969
970
        self.classes = classes
        self.labels = list(range(len(self.classes)))

971
972
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by their names.
973
974
975
976
977

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
978
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
979
            keys are updated in the result dict.
980
        """
zhangwenwei's avatar
zhangwenwei committed
981
982
983
984
985
986
987
988
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

989
    def __repr__(self) -> str:
990
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
991
992
993
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
994
995


996
997
@TRANSFORMS.register_module()
class PointSample(BaseTransform):
998
    """Point sample.
wuyuefeng's avatar
wuyuefeng committed
999
1000
1001

    Sampling data to a certain number.

1002
    Required Keys:
1003

1004
1005
1006
1007
1008
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

    Modified Keys:
1009

1010
1011
1012
1013
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

wuyuefeng's avatar
wuyuefeng committed
1014
1015
    Args:
        num_points (int): Number of points to be sampled.
1016
        sample_range (float, optional): The range where to sample points.
1017
1018
            If not None, the points with depth larger than `sample_range` are
            prior to be sampled. Defaults to None.
1019
1020
        replace (bool): Whether the sampling is with or without replacement.
            Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
1021
1022
    """

1023
1024
    def __init__(self,
                 num_points: int,
1025
1026
                 sample_range: Optional[float] = None,
                 replace: bool = False) -> None:
wuyuefeng's avatar
wuyuefeng committed
1027
        self.num_points = num_points
1028
1029
1030
        self.sample_range = sample_range
        self.replace = replace

1031
1032
1033
1034
1035
1036
1037
1038
    def _points_random_sampling(
        self,
        points: BasePoints,
        num_samples: int,
        sample_range: Optional[float] = None,
        replace: bool = False,
        return_choices: bool = False
    ) -> Union[Tuple[BasePoints, np.ndarray], BasePoints]:
wuyuefeng's avatar
wuyuefeng committed
1039
1040
1041
1042
1043
        """Points random sampling.

        Sample points to a certain number.

        Args:
1044
            points (:obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
1045
            num_samples (int): Number of samples to be sampled.
1046
            sample_range (float, optional): Indicating the range where the
1047
                points will be sampled. Defaults to None.
1048
            replace (bool): Sampling with or without replacement.
1049
                Defaults to False.
1050
            return_choices (bool): Whether return choice. Defaults to False.
1051

wuyuefeng's avatar
wuyuefeng committed
1052
        Returns:
1053
1054
1055
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:

                - points (:obj:`BasePoints`): 3D Points.
1056
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
1057
        """
1058
        if not replace:
wuyuefeng's avatar
wuyuefeng committed
1059
            replace = (points.shape[0] < num_samples)
1060
1061
1062
        point_range = range(len(points))
        if sample_range is not None and not replace:
            # Only sampling the near points when len(points) >= num_samples
1063
            dist = np.linalg.norm(points.coord.numpy(), axis=1)
1064
1065
            far_inds = np.where(dist >= sample_range)[0]
            near_inds = np.where(dist < sample_range)[0]
1066
1067
1068
1069
            # in case there are too many far points
            if len(far_inds) > num_samples:
                far_inds = np.random.choice(
                    far_inds, num_samples, replace=False)
1070
1071
1072
1073
1074
1075
1076
            point_range = near_inds
            num_samples -= len(far_inds)
        choices = np.random.choice(point_range, num_samples, replace=replace)
        if sample_range is not None and not replace:
            choices = np.concatenate((far_inds, choices))
            # Shuffle points after sampling
            np.random.shuffle(choices)
wuyuefeng's avatar
wuyuefeng committed
1077
1078
1079
1080
1081
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

1082
    def transform(self, input_dict: dict) -> dict:
1083
        """Transform function to sample points to in indoor scenes.
1084
1085
1086

        Args:
            input_dict (dict): Result dict from loading pipeline.
1087

1088
        Returns:
1089
            dict: Results after sampling, 'points', 'pts_instance_mask'
1090
            and 'pts_semantic_mask' keys are updated in the result dict.
1091
        """
1092
        points = input_dict['points']
1093
1094
1095
1096
1097
1098
        points, choices = self._points_random_sampling(
            points,
            self.num_points,
            self.sample_range,
            self.replace,
            return_choices=True)
1099
        input_dict['points'] = points
1100

1101
1102
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
wuyuefeng's avatar
wuyuefeng committed
1103

1104
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
1105
            pts_instance_mask = pts_instance_mask[choices]
1106
            input_dict['pts_instance_mask'] = pts_instance_mask
1107
1108
1109

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
1110
            input_dict['pts_semantic_mask'] = pts_semantic_mask
wuyuefeng's avatar
wuyuefeng committed
1111

1112
        return input_dict
wuyuefeng's avatar
wuyuefeng committed
1113

1114
    def __repr__(self) -> str:
1115
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
1116
        repr_str = self.__class__.__name__
1117
        repr_str += f'(num_points={self.num_points},'
1118
1119
        repr_str += f' sample_range={self.sample_range},'
        repr_str += f' replace={self.replace})'
1120

1121
1122
1123
        return repr_str


1124
@TRANSFORMS.register_module()
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
class IndoorPointSample(PointSample):
    """Indoor point sample.

    Sampling data to a certain number.
    NOTE: IndoorPointSample is deprecated in favor of PointSample

    Args:
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, *args, **kwargs):
        warnings.warn(
            'IndoorPointSample is deprecated in favor of PointSample')
        super(IndoorPointSample, self).__init__(*args, **kwargs)


1141
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1142
class IndoorPatchPointSample(BaseTransform):
1143
1144
1145
1146
1147
1148
1149
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
1150
        block_size (float): Size of a block to sample points from.
1151
1152
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
1153
1154
1155
            This parameter is unused in `IndoorPatchPointSample` and thus has
            been deprecated. We plan to remove it in the future.
            Defaults to None.
1156
1157
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
1158
            If not None, will be used as a patch selection criterion.
1159
            Defaults to None.
1160
        use_normalized_coord (bool): Whether to use normalized xyz as
1161
            additional features. Defaults to False.
1162
1163
1164
        num_try (int): Number of times to try if the patch selected is invalid.
            Defaults to 10.
        enlarge_size (float): Enlarge the sampled patch to
1165
            [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as
1166
            an augmentation. If None, set it as 0. Defaults to 0.2.
1167
        min_unique_num (int, optional): Minimum number of unique points
1168
1169
            the sampled patch should contain. If None, use PointNet++'s method
            to judge uniqueness. Defaults to None.
1170
        eps (float): A value added to patch boundary to guarantee
1171
            points coverage. Defaults to 1e-2.
1172
1173
1174

    Note:
        This transform should only be used in the training process of point
1175
1176
1177
        cloud segmentation tasks. For the sliding patch generation and
        inference process in testing, please refer to the `slide_inference`
        function of `EncoderDecoder3D` class.
1178
1179
1180
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
1181
1182
1183
1184
1185
1186
1187
1188
1189
                 num_points: int,
                 block_size: float = 1.5,
                 sample_rate: Optional[float] = None,
                 ignore_index: Optional[int] = None,
                 use_normalized_coord: bool = False,
                 num_try: int = 10,
                 enlarge_size: float = 0.2,
                 min_unique_num: Optional[int] = None,
                 eps: float = 1e-2) -> None:
1190
1191
1192
1193
1194
        self.num_points = num_points
        self.block_size = block_size
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try
1195
        self.enlarge_size = enlarge_size if enlarge_size is not None else 0.0
1196
        self.min_unique_num = min_unique_num
1197
        self.eps = eps
1198
1199
1200
1201
1202

        if sample_rate is not None:
            warnings.warn(
                "'sample_rate' has been deprecated and will be removed in "
                'the future. Please remove them from your code.')
1203

ZCMax's avatar
ZCMax committed
1204
1205
1206
1207
    def _input_generation(self, coords: np.ndarray, patch_center: np.ndarray,
                          coord_max: np.ndarray, attributes: np.ndarray,
                          attribute_dims: dict,
                          point_type: type) -> BasePoints:
1208
1209
        """Generating model input.

1210
        Generate input by subtracting patch center and adding additional
1211
1212
1213
1214
1215
1216
1217
1218
1219
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
1220
            point_type (type): class of input points inherited from BasePoints.
1221
1222

        Returns:
1223
            :obj:`BasePoints`: The generated input data.
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

1247
    def _patch_points_sampling(
1248
1249
            self, points: BasePoints,
            sem_mask: np.ndarray) -> Tuple[BasePoints, np.ndarray]:
1250
1251
1252
1253
1254
1255
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
1256
            points (:obj:`BasePoints`): 3D Points.
1257
1258
1259
            sem_mask (np.ndarray): semantic segmentation mask for input points.

        Returns:
1260
            tuple[:obj:`BasePoints`, np.ndarray]:
1261

1262
                - points (:obj:`BasePoints`): 3D Points.
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

1273
        for _ in range(self.num_try):
1274
1275
1276
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

1277
1278
            # boundary of a patch, which would be enlarged by
            # `self.enlarge_size` as an augmentation
1279
1280
1281
1282
1283
1284
1285
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
1286
1287
                (coords >= (cur_min - self.enlarge_size)) *
                (coords <= (cur_max + self.enlarge_size)),
1288
1289
1290
1291
1292
1293
1294
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]
1295
            point_idxs = np.where(cur_choice)[0]
1296
            mask = np.sum(
1297
1298
                (cur_coords >= (cur_min - self.eps)) * (cur_coords <=
                                                        (cur_max + self.eps)),
1299
                axis=1) == 3
1300

1301
1302
            # two criteria for patch sampling, adopted from PointNet++
            # 1. selected patch should contain enough unique points
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
            if self.min_unique_num is None:
                # use PointNet++'s method as default
                # [31, 31, 62] are just some big values used to transform
                # coords from 3d array to 1d and then check their uniqueness
                # this is used in all the ScanNet code following PointNet++
                vidx = np.ceil(
                    (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) *
                    np.array([31.0, 31.0, 62.0]))
                vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                                 vidx[:, 2])
                flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02
            else:
1315
                # if `min_unique_num` is provided, directly compare with it
1316
                flag1 = mask.sum() >= self.min_unique_num
1317

1318
            # 2. selected patch should contain enough annotated points
1319
1320
1321
1322
1323
1324
1325
1326
1327
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
        # sample idx to `self.num_points`
        if point_idxs.size >= self.num_points:
            # no duplicate in sub-sampling
            choices = np.random.choice(
                point_idxs, self.num_points, replace=False)
        else:
            # do not use random choice here to avoid some points not counted
            dup = np.random.choice(point_idxs.size,
                                   self.num_points - point_idxs.size)
            idx_dup = np.concatenate(
                [np.arange(point_idxs.size),
                 np.array(dup)], 0)
            choices = point_idxs[idx_dup]
1341
1342
1343
1344
1345
1346
1347
1348

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

ZCMax's avatar
ZCMax committed
1349
    def transform(self, input_dict: dict) -> dict:
1350
1351
1352
1353
1354
1355
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1356
            dict: Results after sampling, 'points', 'pts_instance_mask'
1357
            and 'pts_semantic_mask' keys are updated in the result dict.
1358
        """
ZCMax's avatar
ZCMax committed
1359
        points = input_dict['points']
1360

ZCMax's avatar
ZCMax committed
1361
        assert 'pts_semantic_mask' in input_dict.keys(), \
1362
            'semantic mask should be provided in training and evaluation'
ZCMax's avatar
ZCMax committed
1363
        pts_semantic_mask = input_dict['pts_semantic_mask']
1364
1365
1366
1367

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

ZCMax's avatar
ZCMax committed
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
        input_dict['points'] = points
        input_dict['pts_semantic_mask'] = pts_semantic_mask[choices]

        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in input_dict:
            input_dict['eval_ann_info']['pts_semantic_mask'] = \
                pts_semantic_mask[choices]

        pts_instance_mask = input_dict.get('pts_instance_mask', None)

1378
        if pts_instance_mask is not None:
ZCMax's avatar
ZCMax committed
1379
1380
1381
1382
1383
            input_dict['pts_instance_mask'] = pts_instance_mask[choices]
            # 'eval_ann_info' will be passed to evaluator
            if 'eval_ann_info' in input_dict:
                input_dict['eval_ann_info']['pts_instance_mask'] = \
                    pts_instance_mask[choices]
1384

ZCMax's avatar
ZCMax committed
1385
        return input_dict
1386

1387
    def __repr__(self) -> str:
1388
1389
1390
1391
1392
1393
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
1394
1395
        repr_str += f' num_try={self.num_try},'
        repr_str += f' enlarge_size={self.enlarge_size},'
1396
1397
        repr_str += f' min_unique_num={self.min_unique_num},'
        repr_str += f' eps={self.eps})'
wuyuefeng's avatar
wuyuefeng committed
1398
        return repr_str
1399
1400


1401
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1402
class BackgroundPointsFilter(BaseTransform):
1403
1404
1405
    """Filter background points near the bounding box.

    Args:
1406
        bbox_enlarge_range (tuple[float] | float): Bbox enlarge range.
1407
1408
    """

ZCMax's avatar
ZCMax committed
1409
    def __init__(self, bbox_enlarge_range: Union[Tuple[float], float]) -> None:
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

ZCMax's avatar
ZCMax committed
1420
    def transform(self, input_dict: dict) -> dict:
1421
1422
1423
1424
1425
1426
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1427
            dict: Results after filtering, 'points', 'pts_instance_mask'
1428
            and 'pts_semantic_mask' keys are updated in the result dict.
1429
1430
1431
1432
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

xiliu8006's avatar
xiliu8006 committed
1433
1434
1435
1436
        # avoid groundtruth being modified
        gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy()

1437
1438
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
xiliu8006's avatar
xiliu8006 committed
1439
        points_numpy = points.tensor.clone().numpy()
1440
1441
        foreground_masks = box_np_ops.points_in_rbbox(
            points_numpy, gt_bboxes_3d_np, origin=(0.5, 0.5, 0.5))
1442
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1443
            points_numpy, enlarged_gt_bboxes_3d, origin=(0.5, 0.5, 0.5))
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

1459
    def __repr__(self) -> str:
1460
1461
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1462
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1463
        return repr_str
1464
1465


1466
@TRANSFORMS.register_module()
1467
class VoxelBasedPointSampler(BaseTransform):
1468
1469
1470
1471
1472
1473
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
1474
1475
        prev_sweep_cfg (dict, optional): Config for sampling previous points.
            Defaults to None.
1476
        time_dim (int): Index that indicate the time dimension
1477
            for input points. Defaults to 3.
1478
1479
    """

1480
1481
1482
1483
    def __init__(self,
                 cur_sweep_cfg: dict,
                 prev_sweep_cfg: Optional[dict] = None,
                 time_dim: int = 3) -> None:
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

1496
    def _sample_points(self, points: np.ndarray, sampler: VoxelGenerator,
1497
                       point_dim: int) -> np.ndarray:
1498
1499
1500
1501
1502
1503
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
1504
            point_dim (int): The dimension of each points.
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

1523
    def transform(self, results: dict) -> dict:
1524
1525
1526
1527
1528
1529
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1530
            dict: Results after sampling, 'points', 'pts_instance_mask'
1531
            and 'pts_semantic_mask' keys are updated in the result dict.
1532
1533
1534
1535
1536
1537
1538
1539
1540
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1541
1542
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1543
1544
1545
1546
1547
1548
1549
1550
1551
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1552
        points_numpy = np.concatenate(extra_channel, axis=-1)
1553
1554
1555
1556
1557

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1558
1559
1560
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1561
1562
1563
1564
1565
1566
1567
1568
1569
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1570
                                               points_numpy.shape[1])
1571
1572
1573
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1574
                                                     points_numpy.shape[1])
1575

1576
1577
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1578
        else:
1579
            points_numpy = cur_sweep_points
1580
1581

        if self.cur_voxel_generator._max_num_points == 1:
1582
1583
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1584

1585
        # Restore the corresponding seg and mask fields
1586
        for key, dim_index in map_fields2dim:
1587
            results[key] = points_numpy[..., dim_index]
1588
1589
1590

        return results

1591
    def __repr__(self) -> str:
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str
1611
1612


1613
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1614
class AffineResize(BaseTransform):
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
    """Get the affine transform matrices to the target size.

    Different from :class:`RandomAffine` in MMDetection, this class can
    calculate the affine transform matrices while resizing the input image
    to a fixed size. The affine transform matrices include: 1) matrix
    transforming original image to the network input image size. 2) matrix
    transforming original image to the network output feature map size.

    Args:
        img_scale (tuple): Images scales for resizing.
        down_ratio (int): The down ratio of feature map.
            Actually the arg should be >= 1.
1627
        bbox_clip_border (bool): Whether clip the objects
1628
1629
1630
            outside the border of the image. Defaults to True.
    """

ZCMax's avatar
ZCMax committed
1631
1632
1633
1634
    def __init__(self,
                 img_scale: Tuple,
                 down_ratio: int,
                 bbox_clip_border: bool = True) -> None:
1635
1636
1637
1638
1639

        self.img_scale = img_scale
        self.down_ratio = down_ratio
        self.bbox_clip_border = bbox_clip_border

ZCMax's avatar
ZCMax committed
1640
    def transform(self, results: dict) -> dict:
1641
1642
1643
1644
1645
1646
1647
        """Call function to do affine transform to input image and labels.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after affine resize, 'affine_aug', 'trans_mat'
1648
            keys are added in the result dict.
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
        """
        # The results have gone through RandomShiftScale before AffineResize
        if 'center' not in results:
            img = results['img']
            height, width = img.shape[:2]
            center = np.array([width / 2, height / 2], dtype=np.float32)
            size = np.array([width, height], dtype=np.float32)
            results['affine_aug'] = False
        else:
            # The results did not go through RandomShiftScale before
            # AffineResize
            img = results['img']
            center = results['center']
            size = results['size']

        trans_affine = self._get_transform_matrix(center, size, self.img_scale)

        img = cv2.warpAffine(img, trans_affine[:2, :], self.img_scale)

        if isinstance(self.down_ratio, tuple):
            trans_mat = [
                self._get_transform_matrix(
                    center, size,
                    (self.img_scale[0] // ratio, self.img_scale[1] // ratio))
                for ratio in self.down_ratio
            ]  # (3, 3)
        else:
            trans_mat = self._get_transform_matrix(
                center, size, (self.img_scale[0] // self.down_ratio,
                               self.img_scale[1] // self.down_ratio))

        results['img'] = img
        results['img_shape'] = img.shape
        results['pad_shape'] = img.shape
        results['trans_mat'] = trans_mat

ZCMax's avatar
ZCMax committed
1685
1686
        if 'gt_bboxes' in results:
            self._affine_bboxes(results, trans_affine)
1687

ZCMax's avatar
ZCMax committed
1688
1689
        if 'centers_2d' in results:
            centers2d = self._affine_transform(results['centers_2d'],
1690
1691
1692
1693
1694
                                               trans_affine)
            valid_index = (centers2d[:, 0] >
                           0) & (centers2d[:, 0] <
                                 self.img_scale[0]) & (centers2d[:, 1] > 0) & (
                                     centers2d[:, 1] < self.img_scale[1])
ZCMax's avatar
ZCMax committed
1695
1696
1697
1698
            results['centers_2d'] = centers2d[valid_index]

            if 'gt_bboxes' in results:
                results['gt_bboxes'] = results['gt_bboxes'][valid_index]
1699
1700
1701
                if 'gt_bboxes_labels' in results:
                    results['gt_bboxes_labels'] = results['gt_bboxes_labels'][
                        valid_index]
ZCMax's avatar
ZCMax committed
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
                if 'gt_masks' in results:
                    raise NotImplementedError(
                        'AffineResize only supports bbox.')

            if 'gt_bboxes_3d' in results:
                results['gt_bboxes_3d'].tensor = results[
                    'gt_bboxes_3d'].tensor[valid_index]
                if 'gt_labels_3d' in results:
                    results['gt_labels_3d'] = results['gt_labels_3d'][
                        valid_index]
1712
1713
1714
1715
1716

            results['depths'] = results['depths'][valid_index]

        return results

ZCMax's avatar
ZCMax committed
1717
    def _affine_bboxes(self, results: dict, matrix: np.ndarray) -> None:
1718
1719
1720
1721
1722
1723
1724
1725
1726
        """Affine transform bboxes to input image.

        Args:
            results (dict): Result dict from loading pipeline.
            matrix (np.ndarray): Matrix transforming original
                image to the network input image size.
                shape: (3, 3)
        """

ZCMax's avatar
ZCMax committed
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
        bboxes = results['gt_bboxes']
        bboxes[:, :2] = self._affine_transform(bboxes[:, :2], matrix)
        bboxes[:, 2:] = self._affine_transform(bboxes[:, 2:], matrix)
        if self.bbox_clip_border:
            bboxes[:, [0, 2]] = bboxes[:, [0, 2]].clip(0,
                                                       self.img_scale[0] - 1)
            bboxes[:, [1, 3]] = bboxes[:, [1, 3]].clip(0,
                                                       self.img_scale[1] - 1)
        results['gt_bboxes'] = bboxes

    def _affine_transform(self, points: np.ndarray,
                          matrix: np.ndarray) -> np.ndarray:
1739
        """Affine transform bbox points to input image.
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756

        Args:
            points (np.ndarray): Points to be transformed.
                shape: (N, 2)
            matrix (np.ndarray): Affine transform matrix.
                shape: (3, 3)

        Returns:
            np.ndarray: Transformed points.
        """
        num_points = points.shape[0]
        hom_points_2d = np.concatenate((points, np.ones((num_points, 1))),
                                       axis=1)
        hom_points_2d = hom_points_2d.T
        affined_points = np.matmul(matrix, hom_points_2d).T
        return affined_points[:, :2]

ZCMax's avatar
ZCMax committed
1757
1758
    def _get_transform_matrix(self, center: Tuple, scale: Tuple,
                              output_scale: Tuple[float]) -> np.ndarray:
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
        """Get affine transform matrix.

        Args:
            center (tuple): Center of current image.
            scale (tuple): Scale of current image.
            output_scale (tuple[float]): The transform target image scales.

        Returns:
            np.ndarray: Affine transform matrix.
        """
        # TODO: further add rot and shift here.
        src_w = scale[0]
        dst_w = output_scale[0]
        dst_h = output_scale[1]

        src_dir = np.array([0, src_w * -0.5])
        dst_dir = np.array([0, dst_w * -0.5])

        src = np.zeros((3, 2), dtype=np.float32)
        dst = np.zeros((3, 2), dtype=np.float32)
        src[0, :] = center
        src[1, :] = center + src_dir
        dst[0, :] = np.array([dst_w * 0.5, dst_h * 0.5])
        dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir

        src[2, :] = self._get_ref_point(src[0, :], src[1, :])
        dst[2, :] = self._get_ref_point(dst[0, :], dst[1, :])

        get_matrix = cv2.getAffineTransform(src, dst)

        matrix = np.concatenate((get_matrix, [[0., 0., 1.]]))

        return matrix.astype(np.float32)

ZCMax's avatar
ZCMax committed
1793
1794
    def _get_ref_point(self, ref_point1: np.ndarray,
                       ref_point2: np.ndarray) -> np.ndarray:
1795
        """Get reference point to calculate affine transform matrix.
1796
1797

        While using opencv to calculate the affine matrix, we need at least
1798
        three corresponding points separately on original image and target
1799
1800
1801
1802
1803
1804
        image. Here we use two points to get the the third reference point.
        """
        d = ref_point1 - ref_point2
        ref_point3 = ref_point2 + np.array([-d[1], d[0]])
        return ref_point3

1805
    def __repr__(self) -> str:
1806
        """str: Return a string that describes the module."""
1807
1808
1809
1810
1811
1812
        repr_str = self.__class__.__name__
        repr_str += f'(img_scale={self.img_scale}, '
        repr_str += f'down_ratio={self.down_ratio}) '
        return repr_str


1813
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1814
class RandomShiftScale(BaseTransform):
1815
1816
1817
1818
    """Random shift scale.

    Different from the normal shift and scale function, it doesn't
    directly shift or scale image. It can record the shift and scale
1819
    infos into loading TRANSFORMS. It's designed to be used with
1820
1821
1822
1823
1824
1825
1826
    AffineResize together.

    Args:
        shift_scale (tuple[float]): Shift and scale range.
        aug_prob (float): The shifting and scaling probability.
    """

1827
    def __init__(self, shift_scale: Tuple[float], aug_prob: float) -> None:
1828
1829
1830
1831

        self.shift_scale = shift_scale
        self.aug_prob = aug_prob

ZCMax's avatar
ZCMax committed
1832
    def transform(self, results: dict) -> dict:
1833
1834
1835
1836
1837
1838
1839
        """Call function to record random shift and scale infos.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after random shift and scale, 'center', 'size'
1840
            and 'affine_aug' keys are added in the result dict.
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
        """
        img = results['img']

        height, width = img.shape[:2]

        center = np.array([width / 2, height / 2], dtype=np.float32)
        size = np.array([width, height], dtype=np.float32)

        if random.random() < self.aug_prob:
            shift, scale = self.shift_scale[0], self.shift_scale[1]
            shift_ranges = np.arange(-shift, shift + 0.1, 0.1)
            center[0] += size[0] * random.choice(shift_ranges)
            center[1] += size[1] * random.choice(shift_ranges)
            scale_ranges = np.arange(1 - scale, 1 + scale + 0.1, 0.1)
            size *= random.choice(scale_ranges)
            results['affine_aug'] = True
        else:
            results['affine_aug'] = False

        results['center'] = center
        results['size'] = size

        return results

1865
    def __repr__(self) -> str:
1866
        """str: Return a string that describes the module."""
1867
1868
1869
1870
        repr_str = self.__class__.__name__
        repr_str += f'(shift_scale={self.shift_scale}, '
        repr_str += f'aug_prob={self.aug_prob}) '
        return repr_str
1871
1872
1873
1874
1875


@TRANSFORMS.register_module()
class Resize3D(Resize):

1876
    def _resize_3d(self, results: dict) -> None:
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
        """Resize centers_2d and modify camera intrinisc with
        ``results['scale']``."""
        if 'centers_2d' in results:
            results['centers_2d'] *= results['scale_factor'][:2]
        results['cam2img'][0] *= np.array(results['scale_factor'][0])
        results['cam2img'][1] *= np.array(results['scale_factor'][1])

    def transform(self, results: dict) -> dict:
        """Transform function to resize images, bounding boxes, semantic
        segmentation map and keypoints.

        Args:
            results (dict): Result dict from loading pipeline.
1890

1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
        Returns:
            dict: Resized results, 'img', 'gt_bboxes', 'gt_seg_map',
            'gt_keypoints', 'scale', 'scale_factor', 'img_shape',
            and 'keep_ratio' keys are updated in result dict.
        """

        super(Resize3D, self).transform(results)
        self._resize_3d(results)
        return results


@TRANSFORMS.register_module()
class RandomResize3D(RandomResize):
    """The difference between RandomResize3D and RandomResize:

    1. Compared to RandomResize, this class would further
        check if scale is already set in results.
    2. During resizing, this class would modify the centers_2d
        and cam2img with ``results['scale']``.
    """

1912
    def _resize_3d(self, results: dict) -> None:
1913
1914
1915
1916
1917
1918
1919
        """Resize centers_2d and modify camera intrinisc with
        ``results['scale']``."""
        if 'centers_2d' in results:
            results['centers_2d'] *= results['scale_factor'][:2]
        results['cam2img'][0] *= np.array(results['scale_factor'][0])
        results['cam2img'][1] *= np.array(results['scale_factor'][1])

1920
    def transform(self, results: dict) -> dict:
1921
1922
        """Transform function to resize images, bounding boxes, masks, semantic
        segmentation map. Compared to RandomResize, this function would further
1923
1924
1925
1926
        check if scale is already set in results.

        Args:
            results (dict): Result dict from loading pipeline.
1927

1928
        Returns:
1929
1930
            dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor',
            'keep_ratio' keys are added into result dict.
1931
1932
1933
1934
1935
1936
1937
1938
        """
        if 'scale' not in results:
            results['scale'] = self._random_scale()
        self.resize.scale = results['scale']
        results = self.resize(results)
        self._resize_3d(results)

        return results
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991


@TRANSFORMS.register_module()
class RandomCrop3D(RandomCrop):
    """3D version of RandomCrop. RamdomCrop3D supports the modifications of
    camera intrinsic matrix and using predefined randomness variable to do the
    augmentation.

    The absolute ``crop_size`` is sampled based on ``crop_type`` and
    ``image_size``, then the cropped results are generated.

    Required Keys:

    - img
    - gt_bboxes (np.float32) (optional)
    - gt_bboxes_labels (np.int64) (optional)
    - gt_masks (BitmapMasks | PolygonMasks) (optional)
    - gt_ignore_flags (np.bool) (optional)
    - gt_seg_map (np.uint8) (optional)

    Modified Keys:

    - img
    - img_shape
    - gt_bboxes (optional)
    - gt_bboxes_labels (optional)
    - gt_masks (optional)
    - gt_ignore_flags (optional)
    - gt_seg_map (optional)

    Added Keys:

    - homography_matrix

    Args:
        crop_size (tuple): The relative ratio or absolute pixels of
            height and width.
        crop_type (str): One of "relative_range", "relative",
            "absolute", "absolute_range". "relative" randomly crops
            (h * crop_size[0], w * crop_size[1]) part from an input of size
            (h, w). "relative_range" uniformly samples relative crop size from
            range [crop_size[0], 1] and [crop_size[1], 1] for height and width
            respectively. "absolute" crops from an input with absolute size
            (crop_size[0], crop_size[1]). "absolute_range" uniformly samples
            crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w
            in range [crop_size[0], min(w, crop_size[1])].
            Defaults to "absolute".
        allow_negative_crop (bool): Whether to allow a crop that does
            not contain any bbox area. Defaults to False.
        recompute_bbox (bool): Whether to re-compute the boxes based
            on cropped instance masks. Defaults to False.
        bbox_clip_border (bool): Whether clip the objects outside
            the border of the image. Defaults to True.
1992
        rel_offset_h (tuple): The cropping interval of image height. Defaults
1993
            to (0., 1.).
1994
        rel_offset_w (tuple): The cropping interval of image width. Defaults
1995
1996
1997
1998
            to (0., 1.).

    Note:
        - If the image is smaller than the absolute crop size, return the
1999
          original image.
2000
2001
2002
2003
2004
2005
2006
2007
        - The keys for bboxes, labels and masks must be aligned. That is,
          ``gt_bboxes`` corresponds to ``gt_labels`` and ``gt_masks``, and
          ``gt_bboxes_ignore`` corresponds to ``gt_labels_ignore`` and
          ``gt_masks_ignore``.
        - If the crop does not contain any gt-bbox region and
          ``allow_negative_crop`` is set to False, skip this image.
    """

2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
    def __init__(
        self,
        crop_size: tuple,
        crop_type: str = 'absolute',
        allow_negative_crop: bool = False,
        recompute_bbox: bool = False,
        bbox_clip_border: bool = True,
        rel_offset_h: tuple = (0., 1.),
        rel_offset_w: tuple = (0., 1.)
    ) -> None:
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
        super().__init__(
            crop_size=crop_size,
            crop_type=crop_type,
            allow_negative_crop=allow_negative_crop,
            recompute_bbox=recompute_bbox,
            bbox_clip_border=bbox_clip_border)
        # rel_offset specifies the relative offset range of cropping origin
        # [0., 1.] means starting from 0*margin to 1*margin + 1
        self.rel_offset_h = rel_offset_h
        self.rel_offset_w = rel_offset_w

2029
2030
2031
2032
    def _crop_data(self,
                   results: dict,
                   crop_size: tuple,
                   allow_negative_crop: bool = False) -> dict:
2033
2034
2035
2036
2037
2038
2039
        """Function to randomly crop images, bounding boxes, masks, semantic
        segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.
            crop_size (tuple): Expected absolute size after cropping, (h, w).
            allow_negative_crop (bool): Whether to allow a crop that does not
2040
                contain any bbox area. Defaults to False.
2041
2042
2043

        Returns:
            dict: Randomly cropped results, 'img_shape' key in result dict is
2044
            updated according to crop size.
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
        """
        assert crop_size[0] > 0 and crop_size[1] > 0
        for key in results.get('img_fields', ['img']):
            img = results[key]
            if 'img_crop_offset' not in results:
                margin_h = max(img.shape[0] - crop_size[0], 0)
                margin_w = max(img.shape[1] - crop_size[1], 0)
                # TOCHECK: a little different from LIGA implementation
                offset_h = np.random.randint(
                    self.rel_offset_h[0] * margin_h,
                    self.rel_offset_h[1] * margin_h + 1)
                offset_w = np.random.randint(
                    self.rel_offset_w[0] * margin_w,
                    self.rel_offset_w[1] * margin_w + 1)
            else:
                offset_w, offset_h = results['img_crop_offset']

            crop_h = min(crop_size[0], img.shape[0])
            crop_w = min(crop_size[1], img.shape[1])
            crop_y1, crop_y2 = offset_h, offset_h + crop_h
            crop_x1, crop_x2 = offset_w, offset_w + crop_w

            # crop the image
            img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
            img_shape = img.shape
            results[key] = img
        results['img_shape'] = img_shape

        # crop bboxes accordingly and clip to the image boundary
        for key in results.get('bbox_fields', []):
            # e.g. gt_bboxes and gt_bboxes_ignore
            bbox_offset = np.array([offset_w, offset_h, offset_w, offset_h],
                                   dtype=np.float32)
            bboxes = results[key] - bbox_offset
            if self.bbox_clip_border:
                bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1])
                bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0])
            valid_inds = (bboxes[:, 2] > bboxes[:, 0]) & (
                bboxes[:, 3] > bboxes[:, 1])
            # If the crop does not contain any gt-bbox area and
            # allow_negative_crop is False, skip this image.
            if (key == 'gt_bboxes' and not valid_inds.any()
                    and not allow_negative_crop):
                return None
            results[key] = bboxes[valid_inds, :]
            # label fields. e.g. gt_labels and gt_labels_ignore
            label_key = self.bbox2label.get(key)
            if label_key in results:
                results[label_key] = results[label_key][valid_inds]

            # mask fields, e.g. gt_masks and gt_masks_ignore
            mask_key = self.bbox2mask.get(key)
            if mask_key in results:
                results[mask_key] = results[mask_key][
                    valid_inds.nonzero()[0]].crop(
                        np.asarray([crop_x1, crop_y1, crop_x2, crop_y2]))
                if self.recompute_bbox:
                    results[key] = results[mask_key].get_bboxes()

        # crop semantic seg
        for key in results.get('seg_fields', []):
            results[key] = results[key][crop_y1:crop_y2, crop_x1:crop_x2]

        # manipulate camera intrinsic matrix
        # needs to apply offset to K instead of P2 (on KITTI)
        if isinstance(results['cam2img'], list):
            # TODO ignore this, but should handle it in the future
            pass
        else:
            K = results['cam2img'][:3, :3].copy()
            inv_K = np.linalg.inv(K)
            T = np.matmul(inv_K, results['cam2img'][:3])
            K[0, 2] -= crop_x1
            K[1, 2] -= crop_y1
            offset_cam2img = np.matmul(K, T)
            results['cam2img'][:offset_cam2img.shape[0], :offset_cam2img.
                               shape[1]] = offset_cam2img

        results['img_crop_offset'] = [offset_w, offset_h]

        return results

2127
    def transform(self, results: dict) -> dict:
2128
2129
2130
2131
2132
2133
2134
2135
        """Transform function to randomly crop images, bounding boxes, masks,
        semantic segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Randomly cropped results, 'img_shape' key in result dict is
2136
            updated according to crop size.
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
        """
        image_size = results['img'].shape[:2]
        if 'crop_size' not in results:
            crop_size = self._get_crop_size(image_size)
            results['crop_size'] = crop_size
        else:
            crop_size = results['crop_size']
        results = self._crop_data(results, crop_size, self.allow_negative_crop)
        return results

2147
2148
    def __repr__(self) -> dict:
        """str: Return a string that describes the module."""
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
        repr_str = self.__class__.__name__
        repr_str += f'(crop_size={self.crop_size}, '
        repr_str += f'crop_type={self.crop_type}, '
        repr_str += f'allow_negative_crop={self.allow_negative_crop}, '
        repr_str += f'bbox_clip_border={self.bbox_clip_border}), '
        repr_str += f'rel_offset_h={self.rel_offset_h}), '
        repr_str += f'rel_offset_w={self.rel_offset_w})'
        return repr_str


@TRANSFORMS.register_module()
class PhotoMetricDistortion3D(PhotoMetricDistortion):
    """Apply photometric distortion to image sequentially, every transformation
    is applied with a probability of 0.5. The position of random contrast is in
    second or second to last.

    PhotoMetricDistortion3D further support using predefined randomness
    variable to do the augmentation.

    1. random brightness
    2. random contrast (mode 0)
    3. convert color from BGR to HSV
    4. random saturation
    5. random hue
    6. convert color from HSV to BGR
    7. random contrast (mode 1)
    8. randomly swap channels

    Required Keys:

    - img (np.uint8)

    Modified Keys:

    - img (np.float32)

    Args:
        brightness_delta (int): delta of brightness.
        contrast_range (sequence): range of contrast.
        saturation_range (sequence): range of saturation.
        hue_delta (int): delta of hue.
    """

    def transform(self, results: dict) -> dict:
        """Transform function to perform photometric distortion on images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with images distorted.
        """
        assert 'img' in results, '`img` is not found in results'
        img = results['img']
        img = img.astype(np.float32)
        if 'photometric_param' not in results:
            photometric_param = self._random_flags()
            results['photometric_param'] = photometric_param
        else:
            photometric_param = results['photometric_param']

        (mode, brightness_flag, contrast_flag, saturation_flag, hue_flag,
         swap_flag, delta_value, alpha_value, saturation_value, hue_value,
         swap_value) = photometric_param

        # random brightness
        if brightness_flag:
            img += delta_value

        # mode == 0 --> do random contrast first
        # mode == 1 --> do random contrast last
        if mode == 1:
            if contrast_flag:
                img *= alpha_value

        # convert color from BGR to HSV
        img = mmcv.bgr2hsv(img)

        # random saturation
        if saturation_flag:
            img[..., 1] *= saturation_value

        # random hue
        if hue_flag:
            img[..., 0] += hue_value
            img[..., 0][img[..., 0] > 360] -= 360
            img[..., 0][img[..., 0] < 0] += 360

        # convert color from HSV to BGR
        img = mmcv.hsv2bgr(img)

        # random contrast
        if mode == 0:
            if contrast_flag:
                img *= alpha_value

        # randomly swap channels
        if swap_flag:
            img = img[..., swap_value]

        results['img'] = img
        return results


@TRANSFORMS.register_module()
2254
class MultiViewWrapper(BaseTransform):
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
    """Wrap transformation from single-view into multi-view.

    The wrapper processes the images from multi-view one by one. For each
    image, it constructs a pseudo dict according to the keys specified by the
    'process_fields' parameter. After the transformation is finished, desired
    information can be collected by specifying the keys in the 'collected_keys'
    parameter. Multi-view images share the same transformation parameters
    but do not share the same magnitude when a random transformation is
    conducted.

    Args:
        transforms (list[dict]): A list of dict specifying the transformations
            for the monocular situation.
        override_aug_config (bool): flag of whether to use the same aug config
2269
            for multiview image. Defaults to True.
2270
        process_fields (list): Desired keys that the transformations should
2271
            be conducted on. Defaults to ['img', 'cam2img', 'lidar2cam'].
2272
        collected_keys (list): Collect information in transformation
2273
            like rotate angles, crop roi, and flip state. Defaults to
2274
2275
2276
2277
                ['scale', 'scale_factor', 'crop',
                 'crop_offset', 'ori_shape',
                 'pad_shape', 'img_shape',
                 'pad_fixed_size', 'pad_size_divisor',
2278
                 'flip', 'flip_direction', 'rotate'].
2279
        randomness_keys (list): The keys that related to the randomness
2280
            in transformation. Defaults to
2281
2282
2283
2284
                    ['scale', 'scale_factor', 'crop_size', 'flip',
                     'flip_direction', 'photometric_param']
    """

2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
    def __init__(
        self,
        transforms: dict,
        override_aug_config: bool = True,
        process_fields: list = ['img', 'cam2img', 'lidar2cam'],
        collected_keys: list = [
            'scale', 'scale_factor', 'crop', 'img_crop_offset', 'ori_shape',
            'pad_shape', 'img_shape', 'pad_fixed_size', 'pad_size_divisor',
            'flip', 'flip_direction', 'rotate'
        ],
        randomness_keys: list = [
            'scale', 'scale_factor', 'crop_size', 'img_crop_offset', 'flip',
            'flip_direction', 'photometric_param'
        ]
    ) -> None:
2300
        self.transforms = Compose(transforms)
2301
2302
2303
2304
2305
        self.override_aug_config = override_aug_config
        self.collected_keys = collected_keys
        self.process_fields = process_fields
        self.randomness_keys = randomness_keys

2306
    def transform(self, input_dict: dict) -> dict:
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
        """Transform function to do the transform for multiview image.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: output dict after transformtaion
        """
        # store the augmentation related keys for each image.
        for key in self.collected_keys:
            if key not in input_dict or \
                    not isinstance(input_dict[key], list):
                input_dict[key] = []
        prev_process_dict = {}
        for img_id in range(len(input_dict['img'])):
            process_dict = {}

            # override the process dict (e.g. scale in random scale,
            # crop_size in random crop, flip, flip_direction in
            # random flip)
            if img_id != 0 and self.override_aug_config:
                for key in self.randomness_keys:
                    if key in prev_process_dict:
                        process_dict[key] = prev_process_dict[key]

            for key in self.process_fields:
                if key in input_dict:
                    process_dict[key] = input_dict[key][img_id]
2335
            process_dict = self.transforms(process_dict)
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
            # store the randomness variable in transformation.
            prev_process_dict = process_dict

            # store the related results to results_dict
            for key in self.process_fields:
                if key in process_dict:
                    input_dict[key][img_id] = process_dict[key]
            # update the keys
            for key in self.collected_keys:
                if key in process_dict:
                    if len(input_dict[key]) == img_id + 1:
                        input_dict[key][img_id] = process_dict[key]
                    else:
                        input_dict[key].append(process_dict[key])

        for key in self.collected_keys:
            if len(input_dict[key]) == 0:
                input_dict.pop(key)
        return input_dict