test_transforms_3d.py 13 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
import mmcv
import numpy as np
3
import pytest
liyinhao's avatar
liyinhao committed
4
5
import torch

6
from mmdet3d.core import Box3DMode, CameraInstance3DBoxes, LiDARInstance3DBoxes
7
from mmdet3d.datasets import (BackgroundPointsFilter, ObjectNoise,
8
9
                              ObjectSample, RandomFlip3D,
                              VoxelBasedPointSampler)
liyinhao's avatar
liyinhao committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39


def test_remove_points_in_boxes():
    points = np.array([[68.1370, 3.3580, 2.5160, 0.0000],
                       [67.6970, 3.5500, 2.5010, 0.0000],
                       [67.6490, 3.7600, 2.5000, 0.0000],
                       [66.4140, 3.9010, 2.4590, 0.0000],
                       [66.0120, 4.0850, 2.4460, 0.0000],
                       [65.8340, 4.1780, 2.4400, 0.0000],
                       [65.8410, 4.3860, 2.4400, 0.0000],
                       [65.7450, 4.5870, 2.4380, 0.0000],
                       [65.5510, 4.7800, 2.4320, 0.0000],
                       [65.4860, 4.9820, 2.4300, 0.0000]])

    boxes = np.array(
        [[30.0285, 10.5110, -1.5304, 0.5100, 0.8700, 1.6000, 1.6400],
         [7.8369, 1.6053, -1.5605, 0.5800, 1.2300, 1.8200, -3.1000],
         [10.8740, -1.0827, -1.3310, 0.6000, 0.5200, 1.7100, 1.3500],
         [14.9783, 2.2466, -1.4950, 0.6100, 0.7300, 1.5300, -1.9200],
         [11.0656, 0.6195, -1.5202, 0.6600, 1.0100, 1.7600, -1.4600],
         [10.5994, -7.9049, -1.4980, 0.5300, 1.9600, 1.6800, 1.5600],
         [28.7068, -8.8244, -1.1485, 0.6500, 1.7900, 1.7500, 3.1200],
         [20.2630, 5.1947, -1.4799, 0.7300, 1.7600, 1.7300, 1.5100],
         [18.2496, 3.1887, -1.6109, 0.5600, 1.6800, 1.7100, 1.5600],
         [7.7396, -4.3245, -1.5801, 0.5600, 1.7900, 1.8000, -0.8300]])

    points = ObjectSample.remove_points_in_boxes(points, boxes)
    assert points.shape == (10, 4)


40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def test_object_sample():
    db_sampler = mmcv.ConfigDict({
        'data_root': './tests/data/kitti/',
        'info_path': './tests/data/kitti/kitti_dbinfos_train.pkl',
        'rate': 1.0,
        'prepare': {
            'filter_by_difficulty': [-1],
            'filter_by_min_points': {
                'Pedestrian': 10
            }
        },
        'classes': ['Pedestrian', 'Cyclist', 'Car'],
        'sample_groups': {
            'Pedestrian': 6
        }
    })
    np.random.seed(0)
    object_sample = ObjectSample(db_sampler)
    points = np.fromfile(
        './tests/data/kitti/training/velodyne_reduced/000000.bin',
        np.float32).reshape(-1, 4)
    annos = mmcv.load('./tests/data/kitti/kitti_infos_train.pkl')
    info = annos[0]
yinchimaoliang's avatar
yinchimaoliang committed
63
64
    rect = info['calib']['R0_rect'].astype(np.float32)
    Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
65
    annos = info['annos']
yinchimaoliang's avatar
yinchimaoliang committed
66
67
68
    loc = annos['location']
    dims = annos['dimensions']
    rots = annos['rotation_y']
69
    gt_names = annos['name']
yinchimaoliang's avatar
yinchimaoliang committed
70
71
72
73
74
75

    gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                  axis=1).astype(np.float32)
    gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
        Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c))
    CLASSES = ('Pedestrian', 'Cyclist', 'Car')
76
77
78
79
80
81
    gt_labels = []
    for cat in gt_names:
        if cat in CLASSES:
            gt_labels.append(CLASSES.index(cat))
        else:
            gt_labels.append(-1)
82
    gt_labels = np.array(gt_labels, dtype=np.long)
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    input_dict = dict(
        points=points, gt_bboxes_3d=gt_bboxes_3d, gt_labels_3d=gt_labels)
    input_dict = object_sample(input_dict)
    points = input_dict['points']
    gt_bboxes_3d = input_dict['gt_bboxes_3d']
    gt_labels_3d = input_dict['gt_labels_3d']
    repr_str = repr(object_sample)
    expected_repr_str = 'ObjectSample sample_2d=False, ' \
                        'data_root=./tests/data/kitti/, ' \
                        'info_path=./tests/data/kitti/kitti' \
                        '_dbinfos_train.pkl, rate=1.0, ' \
                        'prepare={\'filter_by_difficulty\': [-1], ' \
                        '\'filter_by_min_points\': {\'Pedestrian\': 10}}, ' \
                        'classes=[\'Pedestrian\', \'Cyclist\', \'Car\'], ' \
                        'sample_groups={\'Pedestrian\': 6}'
    assert repr_str == expected_repr_str
yinchimaoliang's avatar
yinchimaoliang committed
99
100
101
    assert points.shape == (800, 4)
    assert gt_bboxes_3d.tensor.shape == (1, 7)
    assert np.all(gt_labels_3d == [0])
102
103


liyinhao's avatar
liyinhao committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
def test_object_noise():
    np.random.seed(0)
    object_noise = ObjectNoise()
    points = np.fromfile(
        './tests/data/kitti/training/velodyne_reduced/000000.bin',
        np.float32).reshape(-1, 4)
    annos = mmcv.load('./tests/data/kitti/kitti_infos_train.pkl')
    info = annos[0]
    rect = info['calib']['R0_rect'].astype(np.float32)
    Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
    annos = info['annos']
    loc = annos['location']
    dims = annos['dimensions']
    rots = annos['rotation_y']
    gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                  axis=1).astype(np.float32)
    gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
        Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c))
    input_dict = dict(points=points, gt_bboxes_3d=gt_bboxes_3d)
    input_dict = object_noise(input_dict)
    points = input_dict['points']
    gt_bboxes_3d = input_dict['gt_bboxes_3d'].tensor
    expected_gt_bboxes_3d = torch.tensor(
        [[9.1724, -1.7559, -1.3550, 0.4800, 1.2000, 1.8900, 0.0505]])
    repr_str = repr(object_noise)
    expected_repr_str = 'ObjectNoise(num_try=100, ' \
                        'translation_std=[0.25, 0.25, 0.25], ' \
                        'global_rot_range=[0.0, 0.0], ' \
                        'rot_range=[-0.15707963267, 0.15707963267])'

    assert repr_str == expected_repr_str
    assert points.shape == (800, 4)
    assert torch.allclose(gt_bboxes_3d, expected_gt_bboxes_3d, 1e-3)
yinchimaoliang's avatar
yinchimaoliang committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192


def test_random_flip_3d():
    random_flip_3d = RandomFlip3D(
        flip_ratio_bev_horizontal=1.0, flip_ratio_bev_vertical=1.0)
    points = np.array([[22.7035, 9.3901, -0.2848, 0.0000],
                       [21.9826, 9.1766, -0.2698, 0.0000],
                       [21.4329, 9.0209, -0.2578, 0.0000],
                       [21.3068, 9.0205, -0.2558, 0.0000],
                       [21.3400, 9.1305, -0.2578, 0.0000],
                       [21.3291, 9.2099, -0.2588, 0.0000],
                       [21.2759, 9.2599, -0.2578, 0.0000],
                       [21.2686, 9.2982, -0.2588, 0.0000],
                       [21.2334, 9.3607, -0.2588, 0.0000],
                       [21.2179, 9.4372, -0.2598, 0.0000]])
    bbox3d_fields = ['gt_bboxes_3d']
    img_fields = []
    box_type_3d = LiDARInstance3DBoxes
    gt_bboxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[38.9229, 18.4417, -1.1459, 0.7100, 1.7600, 1.8600, -2.2652],
             [12.7768, 0.5795, -2.2682, 0.5700, 0.9900, 1.7200, -2.5029],
             [12.7557, 2.2996, -1.4869, 0.6100, 1.1100, 1.9000, -1.9390],
             [10.6677, 0.8064, -1.5435, 0.7900, 0.9600, 1.7900, 1.0856],
             [5.0903, 5.1004, -1.2694, 0.7100, 1.7000, 1.8300, -1.9136]]))
    input_dict = dict(
        points=points,
        bbox3d_fields=bbox3d_fields,
        box_type_3d=box_type_3d,
        img_fields=img_fields,
        gt_bboxes_3d=gt_bboxes_3d)
    input_dict = random_flip_3d(input_dict)
    points = input_dict['points']
    gt_bboxes_3d = input_dict['gt_bboxes_3d'].tensor
    expected_points = np.array([[22.7035, -9.3901, -0.2848, 0.0000],
                                [21.9826, -9.1766, -0.2698, 0.0000],
                                [21.4329, -9.0209, -0.2578, 0.0000],
                                [21.3068, -9.0205, -0.2558, 0.0000],
                                [21.3400, -9.1305, -0.2578, 0.0000],
                                [21.3291, -9.2099, -0.2588, 0.0000],
                                [21.2759, -9.2599, -0.2578, 0.0000],
                                [21.2686, -9.2982, -0.2588, 0.0000],
                                [21.2334, -9.3607, -0.2588, 0.0000],
                                [21.2179, -9.4372, -0.2598, 0.0000]])
    expected_gt_bboxes_3d = torch.tensor(
        [[38.9229, -18.4417, -1.1459, 0.7100, 1.7600, 1.8600, 5.4068],
         [12.7768, -0.5795, -2.2682, 0.5700, 0.9900, 1.7200, 5.6445],
         [12.7557, -2.2996, -1.4869, 0.6100, 1.1100, 1.9000, 5.0806],
         [10.6677, -0.8064, -1.5435, 0.7900, 0.9600, 1.7900, 2.0560],
         [5.0903, -5.1004, -1.2694, 0.7100, 1.7000, 1.8300, 5.0552]])
    repr_str = repr(random_flip_3d)
    expected_repr_str = 'RandomFlip3D(sync_2d=True,' \
                        'flip_ratio_bev_vertical=1.0)'
    assert np.allclose(points, expected_points)
    assert torch.allclose(gt_bboxes_3d, expected_gt_bboxes_3d)
    assert repr_str == expected_repr_str
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234


def test_background_points_filter():
    np.random.seed(0)
    background_points_filter = BackgroundPointsFilter((0.5, 2.0, 0.5))
    points = np.fromfile(
        './tests/data/kitti/training/velodyne_reduced/000000.bin',
        np.float32).reshape(-1, 4)
    orig_points = points.copy()
    annos = mmcv.load('./tests/data/kitti/kitti_infos_train.pkl')
    info = annos[0]
    rect = info['calib']['R0_rect'].astype(np.float32)
    Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
    annos = info['annos']
    loc = annos['location']
    dims = annos['dimensions']
    rots = annos['rotation_y']
    gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                  axis=1).astype(np.float32)
    gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
        Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c))
    extra_points = gt_bboxes_3d.corners.reshape(8, 3)[[1, 2, 5, 6], :]
    extra_points[:, 2] += 0.1
    extra_points = torch.cat([extra_points, extra_points.new_zeros(4, 1)], 1)
    points = np.concatenate([points, extra_points.numpy()], 0)
    input_dict = dict(points=points, gt_bboxes_3d=gt_bboxes_3d)
    input_dict = background_points_filter(input_dict)

    points = input_dict['points']
    repr_str = repr(background_points_filter)
    expected_repr_str = 'BackgroundPointsFilter(bbox_enlarge_range=' \
                        '[[0.5, 2.0, 0.5]])'
    assert repr_str == expected_repr_str
    assert points.shape == (800, 4)
    assert np.allclose(orig_points, points)

    # test single float config
    BackgroundPointsFilter(0.5)

    # The length of bbox_enlarge_range should be 3
    with pytest.raises(AssertionError):
        BackgroundPointsFilter((0.5, 2.0))
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306


def test_voxel_based_point_filter():
    np.random.seed(0)
    cur_sweep_cfg = dict(
        voxel_size=[0.1, 0.1, 0.1],
        point_cloud_range=[-50, -50, -4, 50, 50, 2],
        max_num_points=1,
        max_voxels=1024)
    prev_sweep_cfg = dict(
        voxel_size=[0.1, 0.1, 0.1],
        point_cloud_range=[-50, -50, -4, 50, 50, 2],
        max_num_points=1,
        max_voxels=1024)
    voxel_based_points_filter = VoxelBasedPointSampler(
        cur_sweep_cfg, prev_sweep_cfg, time_dim=3)
    points = np.stack([
        np.random.rand(4096) * 120 - 60,
        np.random.rand(4096) * 120 - 60,
        np.random.rand(4096) * 10 - 6
    ],
                      axis=-1)

    input_time = np.concatenate([np.zeros([2048, 1]), np.ones([2048, 1])], 0)
    input_points = np.concatenate([points, input_time], 1)

    input_dict = dict(
        points=input_points, pts_mask_fields=[], pts_seg_fields=[])
    input_dict = voxel_based_points_filter(input_dict)

    points = input_dict['points']
    repr_str = repr(voxel_based_points_filter)
    expected_repr_str = """VoxelBasedPointSampler(
    num_cur_sweep=1024,
    num_prev_sweep=1024,
    time_dim=3,
    cur_voxel_generator=
        VoxelGenerator(voxel_size=[0.1 0.1 0.1],
                       point_cloud_range=[-50.0, -50.0, -4.0, 50.0, 50.0, 2.0],
                       max_num_points=1,
                       max_voxels=1024,
                       grid_size=[1000, 1000, 60]),
    prev_voxel_generator=
        VoxelGenerator(voxel_size=[0.1 0.1 0.1],
                       point_cloud_range=[-50.0, -50.0, -4.0, 50.0, 50.0, 2.0],
                       max_num_points=1,
                       max_voxels=1024,
                       grid_size=[1000, 1000, 60]))"""

    assert repr_str == expected_repr_str
    assert points.shape == (2048, 4)
    assert (points[:, :3].min(0) <
            cur_sweep_cfg['point_cloud_range'][0:3]).sum() == 0
    assert (points[:, :3].max(0) >
            cur_sweep_cfg['point_cloud_range'][3:6]).sum() == 0

    # Test instance mask and semantic mask
    input_dict = dict(points=input_points)
    input_dict['pts_instance_mask'] = np.random.randint(0, 10, [4096])
    input_dict['pts_semantic_mask'] = np.random.randint(0, 6, [4096])
    input_dict['pts_mask_fields'] = ['pts_instance_mask']
    input_dict['pts_seg_fields'] = ['pts_semantic_mask']

    input_dict = voxel_based_points_filter(input_dict)
    pts_instance_mask = input_dict['pts_instance_mask']
    pts_semantic_mask = input_dict['pts_semantic_mask']
    assert pts_instance_mask.shape == (2048, )
    assert pts_semantic_mask.shape == (2048, )
    assert pts_instance_mask.max() < 10
    assert pts_instance_mask.min() >= 0
    assert pts_semantic_mask.max() < 6
    assert pts_semantic_mask.min() >= 0