test_transforms_3d.py 8.37 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
import mmcv
import numpy as np
import torch

5
from mmdet3d.core import Box3DMode, CameraInstance3DBoxes, LiDARInstance3DBoxes
yinchimaoliang's avatar
yinchimaoliang committed
6
from mmdet3d.datasets import ObjectNoise, ObjectSample, RandomFlip3D
liyinhao's avatar
liyinhao committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36


def test_remove_points_in_boxes():
    points = np.array([[68.1370, 3.3580, 2.5160, 0.0000],
                       [67.6970, 3.5500, 2.5010, 0.0000],
                       [67.6490, 3.7600, 2.5000, 0.0000],
                       [66.4140, 3.9010, 2.4590, 0.0000],
                       [66.0120, 4.0850, 2.4460, 0.0000],
                       [65.8340, 4.1780, 2.4400, 0.0000],
                       [65.8410, 4.3860, 2.4400, 0.0000],
                       [65.7450, 4.5870, 2.4380, 0.0000],
                       [65.5510, 4.7800, 2.4320, 0.0000],
                       [65.4860, 4.9820, 2.4300, 0.0000]])

    boxes = np.array(
        [[30.0285, 10.5110, -1.5304, 0.5100, 0.8700, 1.6000, 1.6400],
         [7.8369, 1.6053, -1.5605, 0.5800, 1.2300, 1.8200, -3.1000],
         [10.8740, -1.0827, -1.3310, 0.6000, 0.5200, 1.7100, 1.3500],
         [14.9783, 2.2466, -1.4950, 0.6100, 0.7300, 1.5300, -1.9200],
         [11.0656, 0.6195, -1.5202, 0.6600, 1.0100, 1.7600, -1.4600],
         [10.5994, -7.9049, -1.4980, 0.5300, 1.9600, 1.6800, 1.5600],
         [28.7068, -8.8244, -1.1485, 0.6500, 1.7900, 1.7500, 3.1200],
         [20.2630, 5.1947, -1.4799, 0.7300, 1.7600, 1.7300, 1.5100],
         [18.2496, 3.1887, -1.6109, 0.5600, 1.6800, 1.7100, 1.5600],
         [7.7396, -4.3245, -1.5801, 0.5600, 1.7900, 1.8000, -0.8300]])

    points = ObjectSample.remove_points_in_boxes(points, boxes)
    assert points.shape == (10, 4)


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
def test_object_sample():
    db_sampler = mmcv.ConfigDict({
        'data_root': './tests/data/kitti/',
        'info_path': './tests/data/kitti/kitti_dbinfos_train.pkl',
        'rate': 1.0,
        'prepare': {
            'filter_by_difficulty': [-1],
            'filter_by_min_points': {
                'Pedestrian': 10
            }
        },
        'classes': ['Pedestrian', 'Cyclist', 'Car'],
        'sample_groups': {
            'Pedestrian': 6
        }
    })
    np.random.seed(0)
    object_sample = ObjectSample(db_sampler)
    points = np.fromfile(
        './tests/data/kitti/training/velodyne_reduced/000000.bin',
        np.float32).reshape(-1, 4)
    annos = mmcv.load('./tests/data/kitti/kitti_infos_train.pkl')
    info = annos[0]
yinchimaoliang's avatar
yinchimaoliang committed
60
61
    rect = info['calib']['R0_rect'].astype(np.float32)
    Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
62
    annos = info['annos']
yinchimaoliang's avatar
yinchimaoliang committed
63
64
65
    loc = annos['location']
    dims = annos['dimensions']
    rots = annos['rotation_y']
66
    gt_names = annos['name']
yinchimaoliang's avatar
yinchimaoliang committed
67
68
69
70
71
72

    gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                  axis=1).astype(np.float32)
    gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
        Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c))
    CLASSES = ('Pedestrian', 'Cyclist', 'Car')
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    gt_labels = []
    for cat in gt_names:
        if cat in CLASSES:
            gt_labels.append(CLASSES.index(cat))
        else:
            gt_labels.append(-1)
    input_dict = dict(
        points=points, gt_bboxes_3d=gt_bboxes_3d, gt_labels_3d=gt_labels)
    input_dict = object_sample(input_dict)
    points = input_dict['points']
    gt_bboxes_3d = input_dict['gt_bboxes_3d']
    gt_labels_3d = input_dict['gt_labels_3d']
    repr_str = repr(object_sample)
    expected_repr_str = 'ObjectSample sample_2d=False, ' \
                        'data_root=./tests/data/kitti/, ' \
                        'info_path=./tests/data/kitti/kitti' \
                        '_dbinfos_train.pkl, rate=1.0, ' \
                        'prepare={\'filter_by_difficulty\': [-1], ' \
                        '\'filter_by_min_points\': {\'Pedestrian\': 10}}, ' \
                        'classes=[\'Pedestrian\', \'Cyclist\', \'Car\'], ' \
                        'sample_groups={\'Pedestrian\': 6}'
    assert repr_str == expected_repr_str
yinchimaoliang's avatar
yinchimaoliang committed
95
96
97
    assert points.shape == (800, 4)
    assert gt_bboxes_3d.tensor.shape == (1, 7)
    assert np.all(gt_labels_3d == [0])
98
99


liyinhao's avatar
liyinhao committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
def test_object_noise():
    np.random.seed(0)
    object_noise = ObjectNoise()
    points = np.fromfile(
        './tests/data/kitti/training/velodyne_reduced/000000.bin',
        np.float32).reshape(-1, 4)
    annos = mmcv.load('./tests/data/kitti/kitti_infos_train.pkl')
    info = annos[0]
    rect = info['calib']['R0_rect'].astype(np.float32)
    Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
    annos = info['annos']
    loc = annos['location']
    dims = annos['dimensions']
    rots = annos['rotation_y']
    gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                  axis=1).astype(np.float32)
    gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
        Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c))
    input_dict = dict(points=points, gt_bboxes_3d=gt_bboxes_3d)
    input_dict = object_noise(input_dict)
    points = input_dict['points']
    gt_bboxes_3d = input_dict['gt_bboxes_3d'].tensor
    expected_gt_bboxes_3d = torch.tensor(
        [[9.1724, -1.7559, -1.3550, 0.4800, 1.2000, 1.8900, 0.0505]])
    repr_str = repr(object_noise)
    expected_repr_str = 'ObjectNoise(num_try=100, ' \
                        'translation_std=[0.25, 0.25, 0.25], ' \
                        'global_rot_range=[0.0, 0.0], ' \
                        'rot_range=[-0.15707963267, 0.15707963267])'

    assert repr_str == expected_repr_str
    assert points.shape == (800, 4)
    assert torch.allclose(gt_bboxes_3d, expected_gt_bboxes_3d, 1e-3)
yinchimaoliang's avatar
yinchimaoliang committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188


def test_random_flip_3d():
    random_flip_3d = RandomFlip3D(
        flip_ratio_bev_horizontal=1.0, flip_ratio_bev_vertical=1.0)
    points = np.array([[22.7035, 9.3901, -0.2848, 0.0000],
                       [21.9826, 9.1766, -0.2698, 0.0000],
                       [21.4329, 9.0209, -0.2578, 0.0000],
                       [21.3068, 9.0205, -0.2558, 0.0000],
                       [21.3400, 9.1305, -0.2578, 0.0000],
                       [21.3291, 9.2099, -0.2588, 0.0000],
                       [21.2759, 9.2599, -0.2578, 0.0000],
                       [21.2686, 9.2982, -0.2588, 0.0000],
                       [21.2334, 9.3607, -0.2588, 0.0000],
                       [21.2179, 9.4372, -0.2598, 0.0000]])
    bbox3d_fields = ['gt_bboxes_3d']
    img_fields = []
    box_type_3d = LiDARInstance3DBoxes
    gt_bboxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[38.9229, 18.4417, -1.1459, 0.7100, 1.7600, 1.8600, -2.2652],
             [12.7768, 0.5795, -2.2682, 0.5700, 0.9900, 1.7200, -2.5029],
             [12.7557, 2.2996, -1.4869, 0.6100, 1.1100, 1.9000, -1.9390],
             [10.6677, 0.8064, -1.5435, 0.7900, 0.9600, 1.7900, 1.0856],
             [5.0903, 5.1004, -1.2694, 0.7100, 1.7000, 1.8300, -1.9136]]))
    input_dict = dict(
        points=points,
        bbox3d_fields=bbox3d_fields,
        box_type_3d=box_type_3d,
        img_fields=img_fields,
        gt_bboxes_3d=gt_bboxes_3d)
    input_dict = random_flip_3d(input_dict)
    points = input_dict['points']
    gt_bboxes_3d = input_dict['gt_bboxes_3d'].tensor
    expected_points = np.array([[22.7035, -9.3901, -0.2848, 0.0000],
                                [21.9826, -9.1766, -0.2698, 0.0000],
                                [21.4329, -9.0209, -0.2578, 0.0000],
                                [21.3068, -9.0205, -0.2558, 0.0000],
                                [21.3400, -9.1305, -0.2578, 0.0000],
                                [21.3291, -9.2099, -0.2588, 0.0000],
                                [21.2759, -9.2599, -0.2578, 0.0000],
                                [21.2686, -9.2982, -0.2588, 0.0000],
                                [21.2334, -9.3607, -0.2588, 0.0000],
                                [21.2179, -9.4372, -0.2598, 0.0000]])
    expected_gt_bboxes_3d = torch.tensor(
        [[38.9229, -18.4417, -1.1459, 0.7100, 1.7600, 1.8600, 5.4068],
         [12.7768, -0.5795, -2.2682, 0.5700, 0.9900, 1.7200, 5.6445],
         [12.7557, -2.2996, -1.4869, 0.6100, 1.1100, 1.9000, 5.0806],
         [10.6677, -0.8064, -1.5435, 0.7900, 0.9600, 1.7900, 2.0560],
         [5.0903, -5.1004, -1.2694, 0.7100, 1.7000, 1.8300, 5.0552]])
    repr_str = repr(random_flip_3d)
    expected_repr_str = 'RandomFlip3D(sync_2d=True,' \
                        'flip_ratio_bev_vertical=1.0)'
    assert np.allclose(points, expected_points)
    assert torch.allclose(gt_bboxes_3d, expected_gt_bboxes_3d)
    assert repr_str == expected_repr_str