test_scannet_dataset.py 8.84 KB
Newer Older
yinchimaoliang's avatar
yinchimaoliang committed
1
import numpy as np
Wenwei Zhang's avatar
Wenwei Zhang committed
2
import pytest
yinchimaoliang's avatar
yinchimaoliang committed
3
import torch
yinchimaoliang's avatar
yinchimaoliang committed
4

5
from mmdet3d.datasets import ScanNetDataset
yinchimaoliang's avatar
yinchimaoliang committed
6
7
8
9


def test_getitem():
    np.random.seed(0)
liyinhao's avatar
liyinhao committed
10
    root_path = './tests/data/scannet/'
yinchimaoliang's avatar
yinchimaoliang committed
11
12
13
14
15
16
17
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                   'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'garbagebin')
    pipelines = [
        dict(
zhangwenwei's avatar
zhangwenwei committed
18
19
            type='LoadPointsFromFile',
            shift_height=True,
yinchimaoliang's avatar
yinchimaoliang committed
20
21
            load_dim=6,
            use_dim=[0, 1, 2]),
zhangwenwei's avatar
zhangwenwei committed
22
23
24
25
26
27
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=True,
            with_label_3d=True,
            with_mask_3d=True,
            with_seg_3d=True),
yinchimaoliang's avatar
yinchimaoliang committed
28
29
        dict(type='IndoorPointSample', num_points=5),
        dict(
wuyuefeng's avatar
wuyuefeng committed
30
31
32
33
34
35
36
37
38
            type='RandomFlip3D',
            sync_2d=False,
            flip_ratio_bev_horizontal=1.0,
            flip_ratio_bev_vertical=1.0),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.087266, 0.087266],
            scale_ratio_range=[1.0, 1.0],
            shift_height=True),
yinchimaoliang's avatar
yinchimaoliang committed
39
40
41
42
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(
            type='Collect3D',
            keys=[
zhangwenwei's avatar
zhangwenwei committed
43
                'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask',
yinchimaoliang's avatar
yinchimaoliang committed
44
                'pts_instance_mask'
liyinhao's avatar
liyinhao committed
45
            ],
wuyuefeng's avatar
wuyuefeng committed
46
            meta_keys=['file_name', 'sample_idx', 'pcd_rotation']),
yinchimaoliang's avatar
yinchimaoliang committed
47
48
    ]

49
    scannet_dataset = ScanNetDataset(root_path, ann_file, pipelines)
yinchimaoliang's avatar
yinchimaoliang committed
50
51
52
    data = scannet_dataset[0]
    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
zhangwenwei's avatar
zhangwenwei committed
53
    gt_labels = data['gt_labels_3d']._data
liyinhao's avatar
liyinhao committed
54
55
    pts_semantic_mask = data['pts_semantic_mask']._data
    pts_instance_mask = data['pts_instance_mask']._data
zhangwenwei's avatar
zhangwenwei committed
56
    file_name = data['img_metas']._data['file_name']
wuyuefeng's avatar
wuyuefeng committed
57
    pcd_rotation = data['img_metas']._data['pcd_rotation']
zhangwenwei's avatar
zhangwenwei committed
58
    sample_idx = data['img_metas']._data['sample_idx']
wuyuefeng's avatar
wuyuefeng committed
59
60
61
62
    expected_rotation = np.array([[0.99654, 0.08311407, 0.],
                                  [-0.08311407, 0.99654, 0.], [0., 0., 1.]])
    assert file_name == './tests/data/scannet/points/scene0000_00.bin'
    assert np.allclose(pcd_rotation, expected_rotation, 1e-3)
liyinhao's avatar
liyinhao committed
63
    assert sample_idx == 'scene0000_00'
wuyuefeng's avatar
wuyuefeng committed
64
65
66
67
68
    expected_points = torch.tensor([[-2.7231, -2.2068, 2.3543, 2.3895],
                                    [-0.4065, -3.4857, 2.1330, 2.1682],
                                    [-1.4578, 1.3510, -0.0441, -0.0089],
                                    [2.2428, -1.1323, -0.0288, 0.0064],
                                    [0.7052, -2.9752, 1.5560, 1.5912]])
wuyuefeng's avatar
wuyuefeng committed
69
    expected_gt_bboxes_3d = torch.tensor(
wuyuefeng's avatar
wuyuefeng committed
70
71
72
73
74
        [[-1.1835, -3.6317, 1.5704, 1.7577, 0.3761, 0.5724, 0.0000],
         [-3.1832, 3.2269, 1.1911, 0.6727, 0.2251, 0.6715, 0.0000],
         [-0.9598, -2.2864, 0.0093, 0.7506, 2.5709, 1.2145, 0.0000],
         [-2.6988, -2.7354, 0.8288, 0.7680, 1.8877, 0.2870, 0.0000],
         [3.2989, 0.2885, -0.0090, 0.7600, 3.8814, 2.1603, 0.0000]])
yinchimaoliang's avatar
yinchimaoliang committed
75
76
77
78
79
80
    expected_gt_labels = np.array([
        6, 6, 4, 9, 11, 11, 10, 0, 15, 17, 17, 17, 3, 12, 4, 4, 14, 1, 0, 0, 0,
        0, 0, 0, 5, 5, 5
    ])
    expected_pts_semantic_mask = np.array([3, 1, 2, 2, 15])
    expected_pts_instance_mask = np.array([44, 22, 10, 10, 57])
81
    original_classes = scannet_dataset.CLASSES
yinchimaoliang's avatar
yinchimaoliang committed
82

83
    assert scannet_dataset.CLASSES == class_names
wuyuefeng's avatar
wuyuefeng committed
84
    assert torch.allclose(points, expected_points, 1e-2)
wuyuefeng's avatar
wuyuefeng committed
85
86
    assert gt_bboxes_3d.tensor[:5].shape == (5, 7)
    assert torch.allclose(gt_bboxes_3d.tensor[:5], expected_gt_bboxes_3d, 1e-2)
yinchimaoliang's avatar
yinchimaoliang committed
87
    assert np.all(gt_labels.numpy() == expected_gt_labels)
liyinhao's avatar
liyinhao committed
88
89
    assert np.all(pts_semantic_mask.numpy() == expected_pts_semantic_mask)
    assert np.all(pts_instance_mask.numpy() == expected_pts_instance_mask)
90
91
92
93
94
95
96
97
98
99
100
101
    assert original_classes == class_names

    scannet_dataset = ScanNetDataset(
        root_path, ann_file, pipeline=None, classes=['cabinet', 'bed'])
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'bed']

    scannet_dataset = ScanNetDataset(
        root_path, ann_file, pipeline=None, classes=('cabinet', 'bed'))
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ('cabinet', 'bed')

zhangwenwei's avatar
zhangwenwei committed
102
    # Test load classes from file
103
104
105
106
107
108
109
110
111
    import tempfile
    tmp_file = tempfile.NamedTemporaryFile()
    with open(tmp_file.name, 'w') as f:
        f.write('cabinet\nbed\n')

    scannet_dataset = ScanNetDataset(
        root_path, ann_file, pipeline=None, classes=tmp_file.name)
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'bed']
yinchimaoliang's avatar
yinchimaoliang committed
112
113
114


def test_evaluate():
Wenwei Zhang's avatar
Wenwei Zhang committed
115
116
    if not torch.cuda.is_available():
        pytest.skip()
wuyuefeng's avatar
wuyuefeng committed
117
    from mmdet3d.core.bbox.structures import DepthInstance3DBoxes
yinchimaoliang's avatar
yinchimaoliang committed
118
119
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
120
    scannet_dataset = ScanNetDataset(root_path, ann_file)
yinchimaoliang's avatar
yinchimaoliang committed
121
122
    results = []
    pred_boxes = dict()
wuyuefeng's avatar
wuyuefeng committed
123
124
125
126
    pred_boxes['boxes_3d'] = DepthInstance3DBoxes(
        torch.tensor([[
            1.4813e+00, 3.5207e+00, 1.5704e+00, 1.7445e+00, 2.3196e-01,
            5.7235e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
127
        ],
wuyuefeng's avatar
wuyuefeng committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
                      [
                          2.9040e+00, -3.4803e+00, 1.1911e+00, 6.6078e-01,
                          1.7072e-01, 6.7154e-01, 0.0000e+00
                      ],
                      [
                          1.1466e+00, 2.1987e+00, 9.2576e-03, 5.4184e-01,
                          2.5346e+00, 1.2145e+00, 0.0000e+00
                      ],
                      [
                          2.9168e+00, 2.5016e+00, 8.2875e-01, 6.1697e-01,
                          1.8428e+00, 2.8697e-01, 0.0000e+00
                      ],
                      [
                          -3.3114e+00, -1.3351e-02, -8.9524e-03, 4.4082e-01,
                          3.8582e+00, 2.1603e+00, 0.0000e+00
                      ],
                      [
                          -2.0135e+00, -3.4857e+00, 9.3848e-01, 1.9911e+00,
                          2.1603e-01, 1.2767e+00, 0.0000e+00
                      ],
                      [
                          -2.1945e+00, -3.1402e+00, -3.8165e-02, 1.4801e+00,
                          6.8676e-01, 1.0586e+00, 0.0000e+00
                      ],
                      [
                          -2.7553e+00, 2.4055e+00, -2.9972e-02, 1.4764e+00,
                          1.4927e+00, 2.3380e+00, 0.0000e+00
                      ]]))
    pred_boxes['labels_3d'] = torch.tensor([6, 6, 4, 9, 11, 11])
    pred_boxes['scores_3d'] = torch.tensor([0.5, 1.0, 1.0, 1.0, 1.0, 0.5])
liyinhao's avatar
liyinhao committed
158
    results.append(pred_boxes)
liyinhao's avatar
liyinhao committed
159
    metric = [0.25, 0.5]
liyinhao's avatar
liyinhao committed
160
    ret_dict = scannet_dataset.evaluate(results, metric)
wuyuefeng's avatar
wuyuefeng committed
161
162
163
164
    assert abs(ret_dict['table_AP_0.25'] - 0.3333) < 0.01
    assert abs(ret_dict['window_AP_0.25'] - 1.0) < 0.01
    assert abs(ret_dict['counter_AP_0.25'] - 1.0) < 0.01
    assert abs(ret_dict['curtain_AP_0.25'] - 1.0) < 0.01
yinchimaoliang's avatar
yinchimaoliang committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211


def test_show():
    import mmcv
    import tempfile
    from os import path as osp

    from mmdet3d.core.bbox import DepthInstance3DBoxes
    temp_dir = tempfile.mkdtemp()
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetDataset(root_path, ann_file)
    boxes_3d = DepthInstance3DBoxes(
        torch.tensor([[
            -2.4053e+00, 9.2295e-01, 8.0661e-02, 2.4054e+00, 2.1468e+00,
            8.5990e-01, 0.0000e+00
        ],
                      [
                          -1.9341e+00, -2.0741e+00, 3.0698e-03, 3.2206e-01,
                          2.5322e-01, 3.5144e-01, 0.0000e+00
                      ],
                      [
                          -3.6908e+00, 8.0684e-03, 2.6201e-01, 4.1515e-01,
                          7.6489e-01, 5.3585e-01, 0.0000e+00
                      ],
                      [
                          2.6332e+00, 8.5143e-01, -4.9964e-03, 3.0367e-01,
                          1.3448e+00, 1.8329e+00, 0.0000e+00
                      ],
                      [
                          2.0221e-02, 2.6153e+00, 1.5109e-02, 7.3335e-01,
                          1.0429e+00, 1.0251e+00, 0.0000e+00
                      ]]))
    scores_3d = torch.tensor(
        [1.2058e-04, 2.3012e-03, 6.2324e-06, 6.6139e-06, 6.7965e-05])
    labels_3d = torch.tensor([0, 0, 0, 0, 0])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
    scannet_dataset.show(results, temp_dir)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.ply')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.ply')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)