test_scannet_dataset.py 6.25 KB
Newer Older
yinchimaoliang's avatar
yinchimaoliang committed
1
import numpy as np
yinchimaoliang's avatar
yinchimaoliang committed
2
import pytest
yinchimaoliang's avatar
yinchimaoliang committed
3
import torch
yinchimaoliang's avatar
yinchimaoliang committed
4

5
from mmdet3d.datasets import ScanNetDataset
yinchimaoliang's avatar
yinchimaoliang committed
6
7
8
9


def test_getitem():
    np.random.seed(0)
10
    root_path = './tests/data/scannet/scannet_train_instance_data'
yinchimaoliang's avatar
yinchimaoliang committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                   'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'garbagebin')
    pipelines = [
        dict(
            type='IndoorLoadPointsFromFile',
            use_height=True,
            load_dim=6,
            use_dim=[0, 1, 2]),
        dict(type='IndoorLoadAnnotations3D'),
        dict(type='IndoorPointSample', num_points=5),
        dict(type='IndoorFlipData', flip_ratio_yz=1.0, flip_ratio_xz=1.0),
        dict(
            type='IndoorGlobalRotScale',
            use_height=True,
liyinhao's avatar
liyinhao committed
28
            rot_range=[-1 / 36, 1 / 36],
yinchimaoliang's avatar
yinchimaoliang committed
29
30
31
32
33
34
35
36
37
38
            scale_range=None),
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(
            type='Collect3D',
            keys=[
                'points', 'gt_bboxes_3d', 'gt_labels', 'pts_semantic_mask',
                'pts_instance_mask'
            ]),
    ]

39
    scannet_dataset = ScanNetDataset(root_path, ann_file, pipelines)
yinchimaoliang's avatar
yinchimaoliang committed
40
41
42
43
    data = scannet_dataset[0]
    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
    gt_labels = data['gt_labels']._data
liyinhao's avatar
liyinhao committed
44
45
    pts_semantic_mask = data['pts_semantic_mask']._data
    pts_instance_mask = data['pts_instance_mask']._data
yinchimaoliang's avatar
yinchimaoliang committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

    expected_points = np.array(
        [[-2.9078157, -1.9569951, 2.3543026, 2.389488],
         [-0.71360034, -3.4359822, 2.1330001, 2.1681855],
         [-1.332374, 1.474838, -0.04405887, -0.00887359],
         [2.1336637, -1.3265059, -0.02880373, 0.00638155],
         [0.43895668, -3.0259454, 1.5560012, 1.5911865]])
    expected_gt_bboxes_3d = np.array([
        [-1.5005362, -3.512584, 1.8565295, 1.7457027, 0.24149807, 0.57235193],
        [-2.8848705, 3.4961755, 1.5268247, 0.66170084, 0.17433672, 0.67153597],
        [-1.1585636, -2.192365, 0.61649567, 0.5557011, 2.5375574, 1.2144762],
        [-2.930457, -2.4856408, 0.9722377, 0.6270478, 1.8461524, 0.28697443],
        [3.3114715, -0.00476722, 1.0712197, 0.46191898, 3.8605113, 2.1603441]
    ])
    expected_gt_labels = np.array([
        6, 6, 4, 9, 11, 11, 10, 0, 15, 17, 17, 17, 3, 12, 4, 4, 14, 1, 0, 0, 0,
        0, 0, 0, 5, 5, 5
    ])
    expected_pts_semantic_mask = np.array([3, 1, 2, 2, 15])
    expected_pts_instance_mask = np.array([44, 22, 10, 10, 57])
66
    original_classes = scannet_dataset.CLASSES
yinchimaoliang's avatar
yinchimaoliang committed
67

68
    assert scannet_dataset.CLASSES == class_names
yinchimaoliang's avatar
yinchimaoliang committed
69
70
71
72
    assert np.allclose(points, expected_points)
    assert gt_bboxes_3d[:5].shape == (5, 6)
    assert np.allclose(gt_bboxes_3d[:5], expected_gt_bboxes_3d)
    assert np.all(gt_labels.numpy() == expected_gt_labels)
liyinhao's avatar
liyinhao committed
73
74
    assert np.all(pts_semantic_mask.numpy() == expected_pts_semantic_mask)
    assert np.all(pts_instance_mask.numpy() == expected_pts_instance_mask)
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    assert original_classes == class_names

    scannet_dataset = ScanNetDataset(
        root_path, ann_file, pipeline=None, classes=['cabinet', 'bed'])
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'bed']

    scannet_dataset = ScanNetDataset(
        root_path, ann_file, pipeline=None, classes=('cabinet', 'bed'))
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ('cabinet', 'bed')

    import tempfile
    tmp_file = tempfile.NamedTemporaryFile()
    with open(tmp_file.name, 'w') as f:
        f.write('cabinet\nbed\n')

    scannet_dataset = ScanNetDataset(
        root_path, ann_file, pipeline=None, classes=tmp_file.name)
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'bed']
yinchimaoliang's avatar
yinchimaoliang committed
96
97
98


def test_evaluate():
yinchimaoliang's avatar
yinchimaoliang committed
99
100
    if not torch.cuda.is_available():
        pytest.skip()
yinchimaoliang's avatar
yinchimaoliang committed
101
102
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
103
    scannet_dataset = ScanNetDataset(root_path, ann_file)
yinchimaoliang's avatar
yinchimaoliang committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    results = []
    pred_boxes = dict()
    pred_boxes['box3d_lidar'] = np.array([[
        3.52074146e+00, -1.48129511e+00, 1.57035351e+00, 2.31956959e-01,
        1.74445975e+00, 5.72351933e-01, 0
    ],
                                          [
                                              -3.48033905e+00, -2.90395617e+00,
                                              1.19105673e+00, 1.70723915e-01,
                                              6.60776615e-01, 6.71535969e-01, 0
                                          ],
                                          [
                                              2.19867110e+00, -1.14655101e+00,
                                              9.25755501e-03, 2.53463078e+00,
                                              5.41841269e-01, 1.21447623e+00, 0
                                          ],
                                          [
                                              2.50163722, -2.91681337,
                                              0.82875049, 1.84280431,
                                              0.61697435, 0.28697443, 0
                                          ],
                                          [
                                              -0.01335114, 3.3114481,
                                              -0.00895238, 3.85815716,
                                              0.44081616, 2.16034412, 0
                                          ]])
    pred_boxes['label_preds'] = torch.Tensor([6, 6, 4, 9, 11]).cuda()
    pred_boxes['scores'] = torch.Tensor([0.5, 1.0, 1.0, 1.0, 1.0]).cuda()
    results.append([pred_boxes])
liyinhao's avatar
liyinhao committed
133
    metric = [0.25, 0.5]
liyinhao's avatar
liyinhao committed
134
    ret_dict = scannet_dataset.evaluate(results, metric)
liyinhao's avatar
liyinhao committed
135
136
137
138
    table_average_precision_25 = ret_dict['table_AP_0.25']
    window_average_precision_25 = ret_dict['window_AP_0.25']
    counter_average_precision_25 = ret_dict['counter_AP_0.25']
    curtain_average_precision_25 = ret_dict['curtain_AP_0.25']
yinchimaoliang's avatar
yinchimaoliang committed
139
140
141
142
    assert abs(table_average_precision_25 - 0.3333) < 0.01
    assert abs(window_average_precision_25 - 1) < 0.01
    assert abs(counter_average_precision_25 - 1) < 0.01
    assert abs(curtain_average_precision_25 - 0.5) < 0.01