"router/src/infer/v3/queue.rs" did not exist on "b6ee0ec7b06b11ad35fe2f2d99318ddc47f95558"
formating.py 10.7 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import numpy as np
from mmcv.parallel import DataContainer as DC

4
from mmdet3d.core.bbox import BaseInstance3DBoxes
5
from mmdet.datasets.builder import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
6
from mmdet.datasets.pipelines import to_tensor
zhangwenwei's avatar
zhangwenwei committed
7
8
9
10

PIPELINES._module_dict.pop('DefaultFormatBundle')


11
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
12
13
14
15
16
17
18
19
20
21
22
23
24
class DefaultFormatBundle(object):
    """Default formatting bundle.

    It simplifies the pipeline of formatting common fields, including "img",
    "proposals", "gt_bboxes", "gt_labels", "gt_masks" and "gt_semantic_seg".
    These fields are formatted as follows.

    - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True)
    - proposals: (1)to tensor, (2)to DataContainer
    - gt_bboxes: (1)to tensor, (2)to DataContainer
    - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer
    - gt_labels: (1)to tensor, (2)to DataContainer
    - gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True)
zhangwenwei's avatar
zhangwenwei committed
25
    - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, \
zhangwenwei's avatar
zhangwenwei committed
26
27
28
29
30
31
32
                       (3)to DataContainer (stack=True)
    """

    def __init__(self, ):
        return

    def __call__(self, results):
33
34
35
36
37
38
39
40
41
        """Call function to transform and format common fields in results.

        Args:
            results (dict): Result dict contains the data to convert.

        Returns:
            dict: The result dict contains the data that is formatted with
                default bundle.
        """
zhangwenwei's avatar
zhangwenwei committed
42
43
44
45
46
47
48
49
50
51
        if 'img' in results:
            if isinstance(results['img'], list):
                # process multiple imgs in single frame
                imgs = [img.transpose(2, 0, 1) for img in results['img']]
                imgs = np.ascontiguousarray(np.stack(imgs, axis=0))
                results['img'] = DC(to_tensor(imgs), stack=True)
            else:
                img = np.ascontiguousarray(results['img'].transpose(2, 0, 1))
                results['img'] = DC(to_tensor(img), stack=True)
        for key in [
52
53
                'proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels',
                'gt_labels_3d', 'pts_instance_mask', 'pts_semantic_mask'
zhangwenwei's avatar
zhangwenwei committed
54
55
56
57
58
59
60
        ]:
            if key not in results:
                continue
            if isinstance(results[key], list):
                results[key] = DC([to_tensor(res) for res in results[key]])
            else:
                results[key] = DC(to_tensor(results[key]))
61
62
63
64
65
66
67
68
        if 'gt_bboxes_3d' in results:
            if isinstance(results['gt_bboxes_3d'], BaseInstance3DBoxes):
                results['gt_bboxes_3d'] = DC(
                    results['gt_bboxes_3d'], cpu_only=True)
            else:
                results['gt_bboxes_3d'] = DC(
                    to_tensor(results['gt_bboxes_3d']))

zhangwenwei's avatar
zhangwenwei committed
69
70
71
72
73
74
75
76
77
78
79
        if 'gt_masks' in results:
            results['gt_masks'] = DC(results['gt_masks'], cpu_only=True)
        if 'gt_semantic_seg' in results:
            results['gt_semantic_seg'] = DC(
                to_tensor(results['gt_semantic_seg'][None, ...]), stack=True)
        return results

    def __repr__(self):
        return self.__class__.__name__


80
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
81
class Collect3D(object):
wangtai's avatar
wangtai committed
82
83
84
85
86
87
88
89
90
    """Collect data from the loader relevant to the specific task.

    This is usually the last stage of the data loader pipeline. Typically keys
    is set to some subset of "img", "proposals", "gt_bboxes",
    "gt_bboxes_ignore", "gt_labels", and/or "gt_masks".

    The "img_meta" item is always populated.  The contents of the "img_meta"
    dictionary depends on "meta_keys". By default this includes:

zhangwenwei's avatar
zhangwenwei committed
91
92
        - 'img_shape': shape of the image input to the network as a tuple \
            (h, w, c).  Note that images may be zero padded on the \
wangtai's avatar
wangtai committed
93
            bottom/right if the batch tensor is larger than this shape.
zhangwenwei's avatar
zhangwenwei committed
94
95
96
97
98
99
100
        - 'scale_factor': a float indicating the preprocessing scale
        - 'flip': a boolean indicating if image flip transform was used
        - 'filename': path to the image file
        - 'ori_shape': original shape of the image as a tuple (h, w, c)
        - 'pad_shape': image shape after padding
        - 'lidar2img': transform from lidar to image
        - 'pcd_horizontal_flip': a boolean indicating if point cloud is \
wangtai's avatar
wangtai committed
101
            flipped horizontally
zhangwenwei's avatar
zhangwenwei committed
102
        - 'pcd_vertical_flip': a boolean indicating if point cloud is \
wangtai's avatar
wangtai committed
103
104
105
106
            flipped vertically
        - 'box_mode_3d': 3D box mode
        - 'box_type_3d': 3D box type
        - 'img_norm_cfg': a dict of normalization information:
zhangwenwei's avatar
zhangwenwei committed
107
108
109
110

            - mean: per channel mean subtraction
            - std: per channel std divisor
            - to_rgb: bool indicating if bgr was converted to rgb
wangtai's avatar
wangtai committed
111
112
113
114
115
116
117
118
119
120
121
122
123
        - 'rect': rectification matrix
        - 'Trv2c': transformation from velodyne to camera coordinate
        - 'P2': transformation betweeen cameras
        - 'pcd_trans': point cloud transformations
        - 'sample_idx': sample index
        - 'pcd_scale_factor': point cloud scale factor
        - 'pcd_rotation': rotation applied to point cloud
        - 'pts_filename': path to point cloud file.

    Args:
        keys (Sequence[str]): Keys of results to be collected in ``data``.
        meta_keys (Sequence[str], optional): Meta keys to be converted to
            ``mmcv.DataContainer`` and collected in ``data[img_metas]``.
zhangwenwei's avatar
zhangwenwei committed
124
125
126
127
128
            Default: ('filename', 'ori_shape', 'img_shape', 'lidar2img', \
            'pad_shape', 'scale_factor', 'flip', 'pcd_horizontal_flip', \
            'pcd_vertical_flip', 'box_mode_3d', 'box_type_3d', \
            'img_norm_cfg', 'rect', 'Trv2c', 'P2', 'pcd_trans', \
            'sample_idx', 'pcd_scale_factor', 'pcd_rotation', 'pts_filename')
wangtai's avatar
wangtai committed
129
    """
zhangwenwei's avatar
zhangwenwei committed
130
131
132
133

    def __init__(self,
                 keys,
                 meta_keys=('filename', 'ori_shape', 'img_shape', 'lidar2img',
wuyuefeng's avatar
wuyuefeng committed
134
135
                            'pad_shape', 'scale_factor', 'flip',
                            'pcd_horizontal_flip', 'pcd_vertical_flip',
136
137
                            'box_mode_3d', 'box_type_3d', 'img_norm_cfg',
                            'rect', 'Trv2c', 'P2', 'pcd_trans', 'sample_idx',
liyinhao's avatar
liyinhao committed
138
139
                            'pcd_scale_factor', 'pcd_rotation',
                            'pts_filename')):
zhangwenwei's avatar
zhangwenwei committed
140
141
142
143
        self.keys = keys
        self.meta_keys = meta_keys

    def __call__(self, results):
144
145
146
147
148
149
150
151
152
153
154
        """Call function to collect keys in results. The keys in ``meta_keys``
        will be converted to :obj:`mmcv.DataContainer`.

        Args:
            results (dict): Result dict contains the data to collect.

        Returns:
            dict: The result dict contains the following keys
                - keys in ``self.keys``
                - ``img_metas``
        """
zhangwenwei's avatar
zhangwenwei committed
155
        data = {}
zhangwenwei's avatar
zhangwenwei committed
156
        img_metas = {}
zhangwenwei's avatar
zhangwenwei committed
157
158
        for key in self.meta_keys:
            if key in results:
zhangwenwei's avatar
zhangwenwei committed
159
                img_metas[key] = results[key]
160

zhangwenwei's avatar
zhangwenwei committed
161
        data['img_metas'] = DC(img_metas, cpu_only=True)
zhangwenwei's avatar
zhangwenwei committed
162
163
164
165
166
        for key in self.keys:
            data[key] = results[key]
        return data

    def __repr__(self):
167
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
168
169
170
171
        return self.__class__.__name__ + '(keys={}, meta_keys={})'.format(
            self.keys, self.meta_keys)


172
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
class DefaultFormatBundle3D(DefaultFormatBundle):
    """Default formatting bundle.

    It simplifies the pipeline of formatting common fields for voxels,
    including "proposals", "gt_bboxes", "gt_labels", "gt_masks" and
    "gt_semantic_seg".
    These fields are formatted as follows.

    - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True)
    - proposals: (1)to tensor, (2)to DataContainer
    - gt_bboxes: (1)to tensor, (2)to DataContainer
    - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer
    - gt_labels: (1)to tensor, (2)to DataContainer
    """

    def __init__(self, class_names, with_gt=True, with_label=True):
        super(DefaultFormatBundle3D, self).__init__()
        self.class_names = class_names
        self.with_gt = with_gt
        self.with_label = with_label

    def __call__(self, results):
195
196
197
198
199
200
201
202
203
        """Call function to transform and format common fields in results.

        Args:
            results (dict): Result dict contains the data to convert.

        Returns:
            dict: The result dict contains the data that is formatted with
                default bundle.
        """
zhangwenwei's avatar
zhangwenwei committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        # Format 3D data
        for key in [
                'voxels', 'coors', 'voxel_centers', 'num_points', 'points'
        ]:
            if key not in results:
                continue
            results[key] = DC(to_tensor(results[key]), stack=False)

        if self.with_gt:
            # Clean GT bboxes in the final
            if 'gt_bboxes_3d_mask' in results:
                gt_bboxes_3d_mask = results['gt_bboxes_3d_mask']
                results['gt_bboxes_3d'] = results['gt_bboxes_3d'][
                    gt_bboxes_3d_mask]
218
219
220
                if 'gt_names_3d' in results:
                    results['gt_names_3d'] = results['gt_names_3d'][
                        gt_bboxes_3d_mask]
zhangwenwei's avatar
zhangwenwei committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
            if 'gt_bboxes_mask' in results:
                gt_bboxes_mask = results['gt_bboxes_mask']
                if 'gt_bboxes' in results:
                    results['gt_bboxes'] = results['gt_bboxes'][gt_bboxes_mask]
                results['gt_names'] = results['gt_names'][gt_bboxes_mask]
            if self.with_label:
                if 'gt_names' in results and len(results['gt_names']) == 0:
                    results['gt_labels'] = np.array([], dtype=np.int64)
                elif 'gt_names' in results and isinstance(
                        results['gt_names'][0], list):
                    # gt_labels might be a list of list in multi-view setting
                    results['gt_labels'] = [
                        np.array([self.class_names.index(n) for n in res],
                                 dtype=np.int64) for res in results['gt_names']
                    ]
                elif 'gt_names' in results:
                    results['gt_labels'] = np.array([
                        self.class_names.index(n) for n in results['gt_names']
                    ],
                                                    dtype=np.int64)
                # we still assume one pipeline for one frame LiDAR
                # thus, the 3D name is list[string]
243
244
245
246
247
248
                if 'gt_names_3d' in results:
                    results['gt_labels_3d'] = np.array([
                        self.class_names.index(n)
                        for n in results['gt_names_3d']
                    ],
                                                       dtype=np.int64)
zhangwenwei's avatar
zhangwenwei committed
249
250
251
252
        results = super(DefaultFormatBundle3D, self).__call__(results)
        return results

    def __repr__(self):
253
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
254
255
256
257
258
        repr_str = self.__class__.__name__
        repr_str += '(class_names={}, '.format(self.class_names)
        repr_str += 'with_gt={}, with_label={})'.format(
            self.with_gt, self.with_label)
        return repr_str