train.py 3.13 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import argparse
ChaimZhu's avatar
add amp  
ChaimZhu committed
3
import logging
zhangwenwei's avatar
zhangwenwei committed
4
import os
5
import os.path as osp
6

7
from mmengine.config import Config, DictAction
ChaimZhu's avatar
add amp  
ChaimZhu committed
8
from mmengine.logging import print_log
9
from mmengine.runner import Runner
zhangwenwei's avatar
zhangwenwei committed
10

VVsssssk's avatar
VVsssssk committed
11
from mmdet3d.utils import register_all_modules
12

zhangwenwei's avatar
zhangwenwei committed
13
14

def parse_args():
15
    parser = argparse.ArgumentParser(description='Train a 3D detector')
zhangwenwei's avatar
zhangwenwei committed
16
    parser.add_argument('config', help='train config file path')
zhangwenwei's avatar
zhangwenwei committed
17
    parser.add_argument('--work-dir', help='the dir to save logs and models')
ChaimZhu's avatar
add amp  
ChaimZhu committed
18
19
20
21
22
    parser.add_argument(
        '--amp',
        action='store_true',
        default=False,
        help='enable automatic-mixed-precision training')
Wenhao Wu's avatar
Wenhao Wu committed
23
24
25
26
27
28
29
30
31
32
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
zhangwenwei's avatar
zhangwenwei committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)
    return args


def main():
    args = parse_args()
VVsssssk's avatar
VVsssssk committed
47
48
49
    # register all modules in mmdet3d into the registries
    # do not init the default scope here because it will be init in the runner
    register_all_modules(init_default_scope=False)
ChaimZhu's avatar
add amp  
ChaimZhu committed
50

51
    # load config
zhangwenwei's avatar
zhangwenwei committed
52
    cfg = Config.fromfile(args.config)
53
    cfg.launcher = args.launcher
Wenhao Wu's avatar
Wenhao Wu committed
54
55
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
ChaimZhu's avatar
add amp  
ChaimZhu committed
56

zhangwenwei's avatar
zhangwenwei committed
57
58
59
60
61
62
63
64
    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])
ChaimZhu's avatar
add amp  
ChaimZhu committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

    # enable automatic-mixed-precision training
    if args.amp is True:
        optim_wrapper = cfg.optim_wrapper.type
        if optim_wrapper == 'AmpOptimWrapper':
            print_log(
                'AMP training is already enabled in your config.',
                logger='current',
                level=logging.WARNING)
        else:
            assert optim_wrapper == 'OptimWrapper', (
                '`--amp` is only supported when the optimizer wrapper type is '
                f'`OptimWrapper` but got {optim_wrapper}.')
            cfg.optim_wrapper.type = 'AmpOptimWrapper'
            cfg.optim_wrapper.loss_scale = 'dynamic'

VVsssssk's avatar
VVsssssk committed
81
82
    # build the runner from config
    runner = Runner.from_cfg(cfg)
ChaimZhu's avatar
add amp  
ChaimZhu committed
83

VVsssssk's avatar
VVsssssk committed
84
85
    # start training
    runner.train()
zhangwenwei's avatar
zhangwenwei committed
86
87
88
89


if __name__ == '__main__':
    main()