train.py 8.37 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
from __future__ import division
zhangwenwei's avatar
zhangwenwei committed
3

zhangwenwei's avatar
zhangwenwei committed
4
5
import argparse
import copy
zhangwenwei's avatar
zhangwenwei committed
6
import mmcv
zhangwenwei's avatar
zhangwenwei committed
7
8
9
import os
import time
import torch
Wenhao Wu's avatar
Wenhao Wu committed
10
import warnings
zww's avatar
zww committed
11
from mmcv import Config, DictAction
Wenhao Wu's avatar
Wenhao Wu committed
12
from mmcv.runner import get_dist_info, init_dist
zhangwenwei's avatar
zhangwenwei committed
13
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
14

15
16
from mmdet import __version__ as mmdet_version
from mmdet3d import __version__ as mmdet3d_version
17
from mmdet3d.apis import init_random_seed, train_model
zhangwenwei's avatar
zhangwenwei committed
18
from mmdet3d.datasets import build_dataset
19
from mmdet3d.models import build_model
zhangwenwei's avatar
zhangwenwei committed
20
from mmdet3d.utils import collect_env, get_root_logger
21
22
from mmdet.apis import set_random_seed
from mmseg import __version__ as mmseg_version
zhangwenwei's avatar
zhangwenwei committed
23

24
25
26
27
28
29
30
try:
    # If mmdet version > 2.20.0, setup_multi_processes would be imported and
    # used from mmdet instead of mmdet3d.
    from mmdet.utils import setup_multi_processes
except ImportError:
    from mmdet3d.utils import setup_multi_processes

zhangwenwei's avatar
zhangwenwei committed
31
32
33
34

def parse_args():
    parser = argparse.ArgumentParser(description='Train a detector')
    parser.add_argument('config', help='train config file path')
zhangwenwei's avatar
zhangwenwei committed
35
    parser.add_argument('--work-dir', help='the dir to save logs and models')
zhangwenwei's avatar
zhangwenwei committed
36
    parser.add_argument(
zhangwenwei's avatar
zhangwenwei committed
37
        '--resume-from', help='the checkpoint file to resume from')
zhangwenwei's avatar
zhangwenwei committed
38
    parser.add_argument(
zww's avatar
zww committed
39
        '--no-validate',
zhangwenwei's avatar
zhangwenwei committed
40
        action='store_true',
zww's avatar
zww committed
41
        help='whether not to evaluate the checkpoint during training')
42
43
    group_gpus = parser.add_mutually_exclusive_group()
    group_gpus.add_argument(
zhangwenwei's avatar
zhangwenwei committed
44
45
46
47
        '--gpus',
        type=int,
        help='number of gpus to use '
        '(only applicable to non-distributed training)')
48
49
50
51
52
53
    group_gpus.add_argument(
        '--gpu-ids',
        type=int,
        nargs='+',
        help='ids of gpus to use '
        '(only applicable to non-distributed training)')
zhangwenwei's avatar
zhangwenwei committed
54
55
56
57
58
    parser.add_argument('--seed', type=int, default=0, help='random seed')
    parser.add_argument(
        '--deterministic',
        action='store_true',
        help='whether to set deterministic options for CUDNN backend.')
zww's avatar
zww committed
59
    parser.add_argument(
Wenhao Wu's avatar
Wenhao Wu committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        '--options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file (deprecate), '
        'change to --cfg-options instead.')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
zhangwenwei's avatar
zhangwenwei committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    parser.add_argument(
        '--autoscale-lr',
        action='store_true',
        help='automatically scale lr with the number of gpus')
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)

Wenhao Wu's avatar
Wenhao Wu committed
90
91
92
93
94
95
96
97
    if args.options and args.cfg_options:
        raise ValueError(
            '--options and --cfg-options cannot be both specified, '
            '--options is deprecated in favor of --cfg-options')
    if args.options:
        warnings.warn('--options is deprecated in favor of --cfg-options')
        args.cfg_options = args.options

zhangwenwei's avatar
zhangwenwei committed
98
99
100
101
102
103
104
    return args


def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)
Wenhao Wu's avatar
Wenhao Wu committed
105
106
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
zww's avatar
zww committed
107

108
109
110
    # set multi-process settings
    setup_multi_processes(cfg)

zhangwenwei's avatar
zhangwenwei committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True

    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
125
126
127
128
    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids
    else:
        cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)
zhangwenwei's avatar
zhangwenwei committed
129
130
131

    if args.autoscale_lr:
        # apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
132
        cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8
zhangwenwei's avatar
zhangwenwei committed
133
134
135
136
137
138
139

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)
Wenhao Wu's avatar
Wenhao Wu committed
140
141
142
        # re-set gpu_ids with distributed training mode
        _, world_size = get_dist_info()
        cfg.gpu_ids = range(world_size)
zhangwenwei's avatar
zhangwenwei committed
143
144
145

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
Wenhao Wu's avatar
Wenhao Wu committed
146
147
    # dump config
    cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
zhangwenwei's avatar
zhangwenwei committed
148
149
    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
zww's avatar
zww committed
150
    log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
151
152
153
154
155
156
157
158
159
    # specify logger name, if we still use 'mmdet', the output info will be
    # filtered and won't be saved in the log_file
    # TODO: ugly workaround to judge whether we are training det or seg model
    if cfg.model.type in ['EncoderDecoder3D']:
        logger_name = 'mmseg'
    else:
        logger_name = 'mmdet'
    logger = get_root_logger(
        log_file=log_file, log_level=cfg.log_level, name=logger_name)
160

zhangwenwei's avatar
zhangwenwei committed
161
162
163
164
165
    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
zww's avatar
zww committed
166
    env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
zhangwenwei's avatar
zhangwenwei committed
167
168
169
170
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info
Wenhao Wu's avatar
Wenhao Wu committed
171
    meta['config'] = cfg.pretty_text
zhangwenwei's avatar
zhangwenwei committed
172
173

    # log some basic info
zww's avatar
zww committed
174
175
    logger.info(f'Distributed training: {distributed}')
    logger.info(f'Config:\n{cfg.pretty_text}')
zhangwenwei's avatar
zhangwenwei committed
176
177

    # set random seeds
178
179
180
181
182
183
    seed = init_random_seed(args.seed)
    logger.info(f'Set random seed to {seed}, '
                f'deterministic: {args.deterministic}')
    set_random_seed(seed, deterministic=args.deterministic)
    cfg.seed = seed
    meta['seed'] = seed
Wenhao Wu's avatar
Wenhao Wu committed
184
    meta['exp_name'] = osp.basename(args.config)
zhangwenwei's avatar
zhangwenwei committed
185

186
    model = build_model(
187
188
189
        cfg.model,
        train_cfg=cfg.get('train_cfg'),
        test_cfg=cfg.get('test_cfg'))
190
    model.init_weights()
191

zww's avatar
zww committed
192
    logger.info(f'Model:\n{model}')
zhangwenwei's avatar
zhangwenwei committed
193
194
195
    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        val_dataset = copy.deepcopy(cfg.data.val)
196
197
198
199
200
201
202
203
204
        # in case we use a dataset wrapper
        if 'dataset' in cfg.data.train:
            val_dataset.pipeline = cfg.data.train.dataset.pipeline
        else:
            val_dataset.pipeline = cfg.data.train.pipeline
        # set test_mode=False here in deep copied config
        # which do not affect AP/AR calculation later
        # refer to https://mmdetection3d.readthedocs.io/en/latest/tutorials/customize_runtime.html#customize-workflow  # noqa
        val_dataset.test_mode = False
zhangwenwei's avatar
zhangwenwei committed
205
206
207
208
209
        datasets.append(build_dataset(val_dataset))
    if cfg.checkpoint_config is not None:
        # save mmdet version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(
210
211
212
            mmdet_version=mmdet_version,
            mmseg_version=mmseg_version,
            mmdet3d_version=mmdet3d_version,
zww's avatar
zww committed
213
            config=cfg.pretty_text,
214
215
216
            CLASSES=datasets[0].CLASSES,
            PALETTE=datasets[0].PALETTE  # for segmentors
            if hasattr(datasets[0], 'PALETTE') else None)
zhangwenwei's avatar
zhangwenwei committed
217
218
    # add an attribute for visualization convenience
    model.CLASSES = datasets[0].CLASSES
219
    train_model(
zhangwenwei's avatar
zhangwenwei committed
220
221
222
223
        model,
        datasets,
        cfg,
        distributed=distributed,
zww's avatar
zww committed
224
        validate=(not args.no_validate),
zhangwenwei's avatar
zhangwenwei committed
225
226
227
228
229
230
        timestamp=timestamp,
        meta=meta)


if __name__ == '__main__':
    main()