nus-3d.py 4.93 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
liyinhao's avatar
liyinhao committed
3
point_cloud_range = [-50, -50, -5, 50, 50, 3]
zhangwenwei's avatar
zhangwenwei committed
4
# For nuScenes we usually do 10-class detection
liyinhao's avatar
liyinhao committed
5
6
7
8
class_names = [
    'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
    'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
VVsssssk's avatar
VVsssssk committed
9
metainfo = dict(CLASSES=class_names)
liyinhao's avatar
liyinhao committed
10
11
dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/'
zhangwenwei's avatar
zhangwenwei committed
12
13
# Input modality for nuScenes dataset, this is consistent with the submission
# format which requires the information in input_modality.
VVsssssk's avatar
VVsssssk committed
14
input_modality = dict(use_lidar=True, use_camera=False)
zhangwenwei's avatar
zhangwenwei committed
15
file_client_args = dict(backend='disk')
VVsssssk's avatar
VVsssssk committed
16
data_prefix = dict(pts='samples/LIDAR_TOP', img='')
zhangwenwei's avatar
zhangwenwei committed
17
18
19
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
zhangwenwei's avatar
zhangwenwei committed
20
21
22
23
24
25
# file_client_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         './data/nuscenes/': 's3://nuscenes/nuscenes/',
#         'data/nuscenes/': 's3://nuscenes/nuscenes/'
#     }))
liyinhao's avatar
liyinhao committed
26
27
28
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
29
        coord_type='LIDAR',
liyinhao's avatar
liyinhao committed
30
31
32
33
34
35
36
37
38
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=file_client_args),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(
zhangwenwei's avatar
zhangwenwei committed
39
40
41
42
        type='GlobalRotScaleTrans',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0, 0, 0]),
wuyuefeng's avatar
wuyuefeng committed
43
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
liyinhao's avatar
liyinhao committed
44
45
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
zhangwenwei's avatar
zhangwenwei committed
46
    dict(type='ObjectNameFilter', classes=class_names),
liyinhao's avatar
liyinhao committed
47
    dict(type='PointShuffle'),
VVsssssk's avatar
VVsssssk committed
48
49
50
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
liyinhao's avatar
liyinhao committed
51
52
53
54
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
55
        coord_type='LIDAR',
liyinhao's avatar
liyinhao committed
56
57
58
59
60
61
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
VVsssssk's avatar
VVsssssk committed
62
        test_mode=True,
liyinhao's avatar
liyinhao committed
63
64
        file_client_args=file_client_args),
    dict(
zhangwenwei's avatar
zhangwenwei committed
65
66
67
68
69
70
71
72
73
74
75
76
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
VVsssssk's avatar
VVsssssk committed
77
78
79
                type='PointsRangeFilter', point_cloud_range=point_cloud_range)
        ]),
    dict(type='Pack3DDetInputs', keys=['points'])
liyinhao's avatar
liyinhao committed
80
]
81
82
83
84
85
86
87
88
89
90
91
92
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
VVsssssk's avatar
VVsssssk committed
93
        test_mode=True,
94
        file_client_args=file_client_args),
VVsssssk's avatar
VVsssssk committed
95
    dict(type='Pack3DDetInputs', keys=['points'])
96
]
VVsssssk's avatar
VVsssssk committed
97
98
99
100
101
102
train_dataloader = dict(
    batch_size=4,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
liyinhao's avatar
liyinhao committed
103
104
        type=dataset_type,
        data_root=data_root,
VVsssssk's avatar
VVsssssk committed
105
        ann_file='nuscenes_infos_train.pkl',
liyinhao's avatar
liyinhao committed
106
        pipeline=train_pipeline,
VVsssssk's avatar
VVsssssk committed
107
        metainfo=metainfo,
zhangwenwei's avatar
zhangwenwei committed
108
        modality=input_modality,
wuyuefeng's avatar
Demo  
wuyuefeng committed
109
        test_mode=False,
VVsssssk's avatar
VVsssssk committed
110
        data_prefix=data_prefix,
wuyuefeng's avatar
Demo  
wuyuefeng committed
111
112
        # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
        # and box_type_3d='Depth' in sunrgbd and scannet dataset.
VVsssssk's avatar
VVsssssk committed
113
114
115
116
117
118
119
120
        box_type_3d='LiDAR'))
test_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
liyinhao's avatar
liyinhao committed
121
122
        type=dataset_type,
        data_root=data_root,
VVsssssk's avatar
VVsssssk committed
123
        ann_file='nuscenes_infos_val.pkl',
liyinhao's avatar
liyinhao committed
124
        pipeline=test_pipeline,
VVsssssk's avatar
VVsssssk committed
125
        metainfo=metainfo,
zhangwenwei's avatar
zhangwenwei committed
126
        modality=input_modality,
VVsssssk's avatar
VVsssssk committed
127
        data_prefix=data_prefix,
wuyuefeng's avatar
Demo  
wuyuefeng committed
128
        test_mode=True,
VVsssssk's avatar
VVsssssk committed
129
130
131
132
133
134
135
136
        box_type_3d='LiDAR'))
val_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
liyinhao's avatar
liyinhao committed
137
138
        type=dataset_type,
        data_root=data_root,
VVsssssk's avatar
VVsssssk committed
139
        ann_file='nuscenes_infos_val.pkl',
liyinhao's avatar
liyinhao committed
140
        pipeline=test_pipeline,
VVsssssk's avatar
VVsssssk committed
141
        metainfo=metainfo,
zhangwenwei's avatar
zhangwenwei committed
142
        modality=input_modality,
wuyuefeng's avatar
Demo  
wuyuefeng committed
143
        test_mode=True,
VVsssssk's avatar
VVsssssk committed
144
        data_prefix=data_prefix,
wuyuefeng's avatar
Demo  
wuyuefeng committed
145
        box_type_3d='LiDAR'))
VVsssssk's avatar
VVsssssk committed
146
147
148
149
150
151
152

val_evaluator = dict(
    type='NuScenesMetric',
    data_root=data_root,
    ann_file=data_root + 'nuscenes_infos_val.pkl',
    metric='bbox')
test_evaluator = val_evaluator