getting_started.md 10.7 KB
Newer Older
twang's avatar
twang committed
1
# Prerequisites
zhangwenwei's avatar
zhangwenwei committed
2

twang's avatar
twang committed
3
4
5
6
7
- Linux or macOS (Windows is not currently officially supported)
- Python 3.6+
- PyTorch 1.3+
- CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
- GCC 5+
xiliu8006's avatar
xiliu8006 committed
8
9
10
- [MMCV](https://mmcv.readthedocs.io/en/latest/#installation)


11
12
13
14
The required versions of MMCV, MMDetection and MMSegmentation for different versions of MMDetection3D are as below. Please install the correct version of MMCV, MMDetection and MMSegmentation to avoid installation issues.

| MMDetection3D version | MMDetection version | MMSegmentation version |    MMCV version     |
|:-------------------:|:-------------------:|:-------------------:|:-------------------:|
hjin2902's avatar
hjin2902 committed
15
| master              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4|
Tai-Wang's avatar
Tai-Wang committed
16
| 0.16.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4|
hjin2902's avatar
hjin2902 committed
17
18
| 0.15.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4|
| 0.14.0              | mmdet>=2.10.0, <=2.11.0| mmseg==0.14.0 | mmcv-full>=1.3.1, <=1.4|
19
20
21
22
23
24
25
26
27
| 0.13.0              | mmdet>=2.10.0, <=2.11.0| Not required  | mmcv-full>=1.2.4, <=1.4|
| 0.12.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.4|
| 0.11.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.4|
| 0.10.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.4|
| 0.9.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.4|
| 0.8.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.1.5, <=1.4|
| 0.7.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.1.5, <=1.4|
| 0.6.0               | mmdet>=2.4.0, <=2.11.0 | Not required  | mmcv-full>=1.1.3, <=1.2|
| 0.5.0               | 2.3.0                  | Not required  | mmcv-full==1.0.5|
zhangwenwei's avatar
Doc  
zhangwenwei committed
28

twang's avatar
twang committed
29
# Installation
zhangwenwei's avatar
Doc  
zhangwenwei committed
30

twang's avatar
twang committed
31
## Install MMDetection3D
zhangwenwei's avatar
Doc  
zhangwenwei committed
32

33
**a. Create a conda virtual environment and activate it.**
zhangwenwei's avatar
zhangwenwei committed
34

twang's avatar
twang committed
35
36
37
```shell
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
zhangwenwei's avatar
Doc  
zhangwenwei committed
38
39
```

40
**b. Install PyTorch and torchvision following the [official instructions](https://pytorch.org/).**
Wenwei Zhang's avatar
Wenwei Zhang committed
41

twang's avatar
twang committed
42
43
```shell
conda install pytorch torchvision -c pytorch
Wenwei Zhang's avatar
Wenwei Zhang committed
44
45
```

twang's avatar
twang committed
46
47
Note: Make sure that your compilation CUDA version and runtime CUDA version match.
You can check the supported CUDA version for precompiled packages on the [PyTorch website](https://pytorch.org/).
Wenwei Zhang's avatar
Wenwei Zhang committed
48

49
`E.g. 1` If you have CUDA 10.1 installed under `/usr/local/cuda` and would like to install
twang's avatar
twang committed
50
PyTorch 1.5, you need to install the prebuilt PyTorch with CUDA 10.1.
Wenwei Zhang's avatar
Wenwei Zhang committed
51

twang's avatar
twang committed
52
```python
53
conda install pytorch==1.5.0 cudatoolkit=10.1 torchvision==0.6.0 -c pytorch
Wenwei Zhang's avatar
Wenwei Zhang committed
54
55
```

twang's avatar
twang committed
56
57
`E.g. 2` If you have CUDA 9.2 installed under `/usr/local/cuda` and would like to install
PyTorch 1.3.1., you need to install the prebuilt PyTorch with CUDA 9.2.
zhangwenwei's avatar
zhangwenwei committed
58

twang's avatar
twang committed
59
60
```python
conda install pytorch=1.3.1 cudatoolkit=9.2 torchvision=0.4.2 -c pytorch
wangtai's avatar
wangtai committed
61
62
```

twang's avatar
twang committed
63
64
If you build PyTorch from source instead of installing the prebuilt pacakge,
you can use more CUDA versions such as 9.0.
65

66
**c. Install [MMCV](https://mmcv.readthedocs.io/en/latest/).**
xiliu8006's avatar
xiliu8006 committed
67
*mmcv-full* is necessary since MMDetection3D relies on MMDetection, CUDA ops in *mmcv-full* are required.
zhangwenwei's avatar
Doc  
zhangwenwei committed
68

69
`e.g.` The pre-build *mmcv-full* could be installed by running: (available versions could be found [here](https://mmcv.readthedocs.io/en/latest/#install-with-pip))
zhangwenwei's avatar
zhangwenwei committed
70

Ziyi Wu's avatar
Ziyi Wu committed
71
```shell
xiliu8006's avatar
xiliu8006 committed
72
73
74
75
76
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
```

Please replace `{cu_version}` and `{torch_version}` in the url to your desired one. For example, to install the latest `mmcv-full` with `CUDA 11` and `PyTorch 1.7.0`, use the following command:

twang's avatar
twang committed
77
```shell
xiliu8006's avatar
xiliu8006 committed
78
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html
twang's avatar
twang committed
79
```
zhangwenwei's avatar
zhangwenwei committed
80

xiliu8006's avatar
xiliu8006 committed
81
See [here](https://github.com/open-mmlab/mmcv#install-with-pip) for different versions of MMCV compatible to different PyTorch and CUDA versions.
twang's avatar
twang committed
82
Optionally, you could also build the full version from source:
zhangwenwei's avatar
zhangwenwei committed
83

twang's avatar
twang committed
84
```shell
xiliu8006's avatar
xiliu8006 committed
85
86
87
88
89
90
91
92
93
94
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
MMCV_WITH_OPS=1 pip install -e .  # package mmcv-full will be installed after this step
cd ..
```

Or directly run

```shell
pip install mmcv-full
twang's avatar
twang committed
95
```
zhangwenwei's avatar
zhangwenwei committed
96

97
**d. Install [MMDetection](https://github.com/open-mmlab/mmdetection).**
zhangwenwei's avatar
zhangwenwei committed
98

twang's avatar
twang committed
99
```shell
hjin2902's avatar
hjin2902 committed
100
pip install mmdet==2.14.0
twang's avatar
twang committed
101
```
zhangwenwei's avatar
zhangwenwei committed
102

twang's avatar
twang committed
103
Optionally, you could also build MMDetection from source in case you want to modify the code:
zhangwenwei's avatar
zhangwenwei committed
104
105

```shell
twang's avatar
twang committed
106
107
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
hjin2902's avatar
hjin2902 committed
108
git checkout v2.14.0  # switch to v2.14.0 branch
twang's avatar
twang committed
109
110
pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"
zhangwenwei's avatar
zhangwenwei committed
111
112
```

113
114
115
**e. Install [MMSegmentation](https://github.com/open-mmlab/mmsegmentation).**

```shell
hjin2902's avatar
hjin2902 committed
116
pip install mmsegmentation==0.14.1
117
118
119
120
121
122
123
```

Optionally, you could also build MMSegmentation from source in case you want to modify the code:

```shell
git clone https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
hjin2902's avatar
hjin2902 committed
124
git checkout v0.14.1  # switch to v0.14.1 branch
125
126
127
128
pip install -e .  # or "python setup.py develop"
```

**f. Clone the MMDetection3D repository.**
zhangwenwei's avatar
Doc  
zhangwenwei committed
129

twang's avatar
twang committed
130
131
132
133
```shell
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
```
zhangwenwei's avatar
zhangwenwei committed
134

135
**g.Install build requirements and then install MMDetection3D.**
zhangwenwei's avatar
zhangwenwei committed
136

twang's avatar
twang committed
137
138
139
```shell
pip install -v -e .  # or "python setup.py develop"
```
zhangwenwei's avatar
zhangwenwei committed
140

twang's avatar
twang committed
141
Note:
zhangwenwei's avatar
Doc  
zhangwenwei committed
142

twang's avatar
twang committed
143
144
1. The git commit id will be written to the version number with step d, e.g. 0.6.0+2e7045c. The version will also be saved in trained models.
It is recommended that you run step d each time you pull some updates from github. If C++/CUDA codes are modified, then this step is compulsory.
zhangwenwei's avatar
Doc  
zhangwenwei committed
145

twang's avatar
twang committed
146
    > Important: Be sure to remove the `./build` folder if you reinstall mmdet with a different CUDA/PyTorch version.
zhangwenwei's avatar
zhangwenwei committed
147

twang's avatar
twang committed
148
149
150
151
152
    ```shell
    pip uninstall mmdet3d
    rm -rf ./build
    find . -name "*.so" | xargs rm
    ```
zhangwenwei's avatar
zhangwenwei committed
153

154
2. Following the above instructions, MMDetection3D is installed on `dev` mode, any local modifications made to the code will take effect without the need to reinstall it (unless you submit some commits and want to update the version number).
zhangwenwei's avatar
zhangwenwei committed
155

twang's avatar
twang committed
156
157
3. If you would like to use `opencv-python-headless` instead of `opencv-python`,
you can install it before installing MMCV.
zhangwenwei's avatar
zhangwenwei committed
158

twang's avatar
twang committed
159
4. Some dependencies are optional. Simply running `pip install -v -e .` will only install the minimum runtime requirements. To use optional dependencies like `albumentations` and `imagecorruptions` either install them manually with `pip install -r requirements/optional.txt` or specify desired extras when calling `pip` (e.g. `pip install -v -e .[optional]`). Valid keys for the extras field are: `all`, `tests`, `build`, and `optional`.
zhangwenwei's avatar
zhangwenwei committed
160

twang's avatar
twang committed
161
5. The code can not be built for CPU only environment (where CUDA isn't available) for now.
zhangwenwei's avatar
zhangwenwei committed
162

twang's avatar
twang committed
163
## Another option: Docker Image
Wenwei Zhang's avatar
Wenwei Zhang committed
164

twang's avatar
twang committed
165
We provide a [Dockerfile](https://github.com/open-mmlab/mmdetection3d/blob/master/docker/Dockerfile) to build an image.
Wenwei Zhang's avatar
Wenwei Zhang committed
166

twang's avatar
twang committed
167
168
169
170
```shell
# build an image with PyTorch 1.6, CUDA 10.1
docker build -t mmdetection3d docker/
```
Wenwei Zhang's avatar
Wenwei Zhang committed
171

twang's avatar
twang committed
172
Run it with
Wenwei Zhang's avatar
Wenwei Zhang committed
173

twang's avatar
twang committed
174
175
176
```shell
docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection3d/data mmdetection3d
```
Wenwei Zhang's avatar
Wenwei Zhang committed
177

twang's avatar
twang committed
178
## A from-scratch setup script
Wenwei Zhang's avatar
Wenwei Zhang committed
179

180
Here is a full script for setting up MMdetection3D with conda.
Wenwei Zhang's avatar
Wenwei Zhang committed
181

twang's avatar
twang committed
182
183
184
```shell
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
Wenwei Zhang's avatar
Wenwei Zhang committed
185

186
# install latest PyTorch prebuilt with the default prebuilt CUDA version (usually the latest)
twang's avatar
twang committed
187
conda install -c pytorch pytorch torchvision -y
Wenwei Zhang's avatar
Wenwei Zhang committed
188

twang's avatar
twang committed
189
190
# install mmcv
pip install mmcv-full
liyinhao's avatar
liyinhao committed
191

twang's avatar
twang committed
192
193
# install mmdetection
pip install git+https://github.com/open-mmlab/mmdetection.git
liyinhao's avatar
liyinhao committed
194

195
196
197
# install mmsegmentation
pip install git+https://github.com/open-mmlab/mmsegmentation.git

twang's avatar
twang committed
198
199
200
201
# install mmdetection3d
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
pip install -v -e .
zhangwenwei's avatar
zhangwenwei committed
202
```
liyinhao's avatar
liyinhao committed
203

twang's avatar
twang committed
204
205
206
## Using multiple MMDetection3D versions

The train and test scripts already modify the `PYTHONPATH` to ensure the script use the MMDetection3D in the current directory.
liyinhao's avatar
liyinhao committed
207

twang's avatar
twang committed
208
209
210
211
To use the default MMDetection3D installed in the environment rather than that you are working with, you can remove the following line in those scripts

```shell
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH
liyinhao's avatar
liyinhao committed
212
213
```

twang's avatar
twang committed
214
# Verification
liyinhao's avatar
liyinhao committed
215

216
## Verify with point cloud demo
zhangwenwei's avatar
Doc  
zhangwenwei committed
217

218
We provide several demo scripts to test a single sample. Pre-trained models can be downloaded from [model zoo](model_zoo.md). To test a single-modality 3D detection on point cloud scenes:
zhangwenwei's avatar
Doc  
zhangwenwei committed
219
220

```shell
wuyuefeng's avatar
Demo  
wuyuefeng committed
221
python demo/pcd_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}]
zhangwenwei's avatar
Doc  
zhangwenwei committed
222
223
224
225
226
```

Examples:

```shell
227
python demo/pcd_demo.py demo/data/kitti/kitti_000008.bin configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth
zhangwenwei's avatar
zhangwenwei committed
228
```
229

yinchimaoliang's avatar
yinchimaoliang committed
230
If you want to input a `ply` file, you can use the following function and convert it to `bin` format. Then you can use the converted `bin` file to generate demo.
231
Note that you need to install `pandas` and `plyfile` before using this script. This function can also be used for data preprocessing for training ```ply data```.
232

yinchimaoliang's avatar
yinchimaoliang committed
233
234
235
236
237
```python
import numpy as np
import pandas as pd
from plyfile import PlyData

238
def convert_ply(input_path, output_path):
yinchimaoliang's avatar
yinchimaoliang committed
239
240
241
242
243
244
245
246
247
248
    plydata = PlyData.read(input_path)  # read file
    data = plydata.elements[0].data  # read data
    data_pd = pd.DataFrame(data)  # convert to DataFrame
    data_np = np.zeros(data_pd.shape, dtype=np.float)  # initialize array to store data
    property_names = data[0].dtype.names  # read names of properties
    for i, name in enumerate(
            property_names):  # read data by property
        data_np[:, i] = data_pd[name]
    data_np.astype(np.float32).tofile(output_path)
```
249

yinchimaoliang's avatar
yinchimaoliang committed
250
Examples:
zhangwenwei's avatar
zhangwenwei committed
251

yinchimaoliang's avatar
yinchimaoliang committed
252
253
254
```python
convert_ply('./test.ply', './test.bin')
```
zhangwenwei's avatar
zhangwenwei committed
255

256
If you have point clouds in other format (`off`, `obj`, etc.), you can use `trimesh` to convert them into `ply`.
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

```python
import trimesh

def to_ply(input_path, output_path, original_type):
    mesh = trimesh.load(input_path, file_type=original_type)  # read file
    mesh.export(output_path, file_type='ply')  # convert to ply
```

Examples:

```python
to_ply('./test.obj', './test.ply', 'obj')
```

272
More demos about single/multi-modality and indoor/outdoor 3D detection can be found in [demo](demo.md).
273

twang's avatar
twang committed
274
## High-level APIs for testing point clouds
zhangwenwei's avatar
zhangwenwei committed
275

twang's avatar
twang committed
276
### Synchronous interface
Ziyi Wu's avatar
Ziyi Wu committed
277

liyinhao's avatar
liyinhao committed
278
Here is an example of building the model and test given point clouds.
zhangwenwei's avatar
zhangwenwei committed
279
280

```python
281
from mmdet3d.apis import init_model, inference_detector
zhangwenwei's avatar
zhangwenwei committed
282

liyinhao's avatar
liyinhao committed
283
284
config_file = 'configs/votenet/votenet_8x8_scannet-3d-18class.py'
checkpoint_file = 'checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth'
zhangwenwei's avatar
zhangwenwei committed
285
286

# build the model from a config file and a checkpoint file
287
model = init_model(config_file, checkpoint_file, device='cuda:0')
zhangwenwei's avatar
zhangwenwei committed
288
289

# test a single image and show the results
liyinhao's avatar
liyinhao committed
290
291
292
293
point_cloud = 'test.bin'
result, data = inference_detector(model, point_cloud)
# visualize the results and save the results in 'results' folder
model.show_results(data, result, out_dir='results')
zhangwenwei's avatar
zhangwenwei committed
294
```