getting_started.md 18.1 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
# Getting Started

This page provides basic tutorials about the usage of MMDetection.
zhangwenwei's avatar
Doc  
zhangwenwei committed
4
5
6
7
For installation instructions, please see [install.md](install.md).

## Prepare datasets

zhangwenwei's avatar
zhangwenwei committed
8
It is recommended to symlink the dataset root to `$MMDETECTION3D/data`.
zhangwenwei's avatar
Doc  
zhangwenwei committed
9
10
11
If your folder structure is different, you may need to change the corresponding paths in config files.

```
12
13
mmdetection3d
├── mmdet3d
zhangwenwei's avatar
Doc  
zhangwenwei committed
14
15
16
├── tools
├── configs
├── data
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
│   ├── nuscenes
│   │   ├── maps
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── v1.0-test
|   |   ├── v1.0-trainval
│   ├── kitti
│   │   ├── ImageSets
│   │   ├── testing
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── velodyne
│   │   ├── training
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── label_2
│   │   │   ├── velodyne
wangtai's avatar
wangtai committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
│   ├── lyft
│   │   ├── v1.01-train
│   │   │   ├── v1.01-train (train_data)
│   │   │   ├── lidar (train_lidar)
│   │   │   ├── images (train_images)
│   │   │   ├── maps (train_maps)
│   │   ├── v1.01-test
│   │   │   ├── v1.01-test (test_data)
│   │   │   ├── lidar (test_lidar)
│   │   │   ├── images (test_images)
│   │   │   ├── maps (test_maps)
│   │   ├── train.txt
│   │   ├── val.txt
│   │   ├── test.txt
│   │   ├── sample_submission.csv
49
50
51
52
53
54
55
56
57
58
59
60
61
│   ├── scannet
│   │   ├── meta_data
│   │   ├── scans
│   │   ├── batch_load_scannet_data.py
│   │   ├── load_scannet_data.py
│   │   ├── scannet_utils.py
│   │   ├── README.md
│   ├── sunrgbd
│   │   ├── OFFICIAL_SUNRGBD
│   │   ├── matlab
│   │   ├── sunrgbd_data.py
│   │   ├── sunrgbd_utils.py
│   │   ├── README.md
zhangwenwei's avatar
Doc  
zhangwenwei committed
62
63
64

```

65
66
67
68
Download nuScenes V1.0 full dataset data [HERE]( https://www.nuscenes.org/download). Prepare nuscenes data by running
```bash
python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes
```
zhangwenwei's avatar
Doc  
zhangwenwei committed
69

70
71
72
Download KITTI 3D detection data [HERE](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d). Prepare kitti data by running
```bash
python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --extra-tag kitti
zhangwenwei's avatar
Doc  
zhangwenwei committed
73
74
```

wangtai's avatar
wangtai committed
75
76
77
78
79
80
Download Lyft 3D detection data [HERE](https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/data). Prepare Lyft data by running
```bash
python tools/create_data.py lyft --root-path ./data/lyft --out-dir ./data/lyft --extra-tag lyft --version v1.01
```
Note that we follow the original folder names for clear organization. Please rename the raw folders as shown above.

81
82
83
To prepare scannet data, please see [scannet](../data/scannet/README.md).

To prepare sunrgbd data, please see [sunrgbd](../data/sunrgbd/README.md).
zhangwenwei's avatar
Doc  
zhangwenwei committed
84

zhangwenwei's avatar
zhangwenwei committed
85

zhangwenwei's avatar
Doc  
zhangwenwei committed
86
For using custom datasets, please refer to [Tutorials 2: Adding New Dataset](tutorials/new_dataset.md).
zhangwenwei's avatar
zhangwenwei committed
87
88
89
90
91
92
93
94

## Inference with pretrained models

We provide testing scripts to evaluate a whole dataset (COCO, PASCAL VOC, Cityscapes, etc.),
and also some high-level apis for easier integration to other projects.

### Test a dataset

zhangwenwei's avatar
Doc  
zhangwenwei committed
95
96
97
- single GPU
- single node multiple GPU
- multiple node
zhangwenwei's avatar
zhangwenwei committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111

You can use the following commands to test a dataset.

```shell
# single-gpu testing
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] [--show]

# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]
```

Optional arguments:
- `RESULT_FILE`: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.
- `EVAL_METRICS`: Items to be evaluated on the results. Allowed values depend on the dataset, e.g., `proposal_fast`, `proposal`, `bbox`, `segm` are available for COCO, `mAP`, `recall` for PASCAL VOC. Cityscapes could be evaluated by `cityscapes` as well as all COCO metrics.
liyinhao's avatar
liyinhao committed
112
- `--show`: If specified, detection results will be plotted in the silient mode. It is only applicable to single GPU testing and used for debugging and visualization. This should be used with `--show-dir`.
wuyuefeng's avatar
Demo  
wuyuefeng committed
113
- `--show-dir`: If specified, detection results will be plotted on the `***_points.obj` and `***_pred.ply` files in the specified directory. It is only applicable to single GPU testing and used for debugging and visualization. You do NOT need a GUI available in your environment for using this option.
zhangwenwei's avatar
zhangwenwei committed
114
115
116
117
118
119


Examples:

Assume that you have already downloaded the checkpoints to the directory `checkpoints/`.

liyinhao's avatar
liyinhao committed
120
1. Test votenet on ScanNet and save the points and prediction visualization results.
zhangwenwei's avatar
zhangwenwei committed
121
122

```shell
liyinhao's avatar
liyinhao committed
123
124
125
python tools/test.py configs/votenet/votenet_8x8_scannet-3d-18class.py \
    checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth \
    --show --show-dir ./data/scannet/show_results
zhangwenwei's avatar
zhangwenwei committed
126
127
```

liyinhao's avatar
liyinhao committed
128
2. Test votenet on ScanNet, save the points, prediction, groundtruth visualization results, and evaluate the mAP.
zhangwenwei's avatar
Doc  
zhangwenwei committed
129
130

```shell
liyinhao's avatar
liyinhao committed
131
132
python tools/test.py configs/votenet/votenet_8x8_scannet-3d-18class.py \
    checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth \
zhangwenwei's avatar
zhangwenwei committed
133
    --eval mAP
liyinhao's avatar
liyinhao committed
134
    --options 'show=True' 'out_dir=./data/scannet/show_results'
zhangwenwei's avatar
zhangwenwei committed
135
136
```

liyinhao's avatar
liyinhao committed
137
3. Test votenet on ScanNet (without saving the test results) and evaluate the mAP.
zhangwenwei's avatar
zhangwenwei committed
138
139

```shell
liyinhao's avatar
liyinhao committed
140
141
142
python tools/test.py configs/votenet/votenet_8x8_scannet-3d-18class.py \
    checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth \
    --eval mAP
zhangwenwei's avatar
zhangwenwei committed
143
144
```

liyinhao's avatar
liyinhao committed
145
4. Test SECOND with 8 GPUs, and evaluate the mAP.
zhangwenwei's avatar
Doc  
zhangwenwei committed
146
147

```shell
liyinhao's avatar
liyinhao committed
148
149
150
./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py \
    checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-3class_20200620_230238-9208083a.pth \
    --out results.pkl --eval mAP
zhangwenwei's avatar
Doc  
zhangwenwei committed
151
152
```

liyinhao's avatar
liyinhao committed
153
5. Test PointPillars on nuscenes with 8 GPUs, and generate the json file to be submit to the official evaluation server.
zhangwenwei's avatar
zhangwenwei committed
154
155

```shell
liyinhao's avatar
liyinhao committed
156
157
158
./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py \
    checkpoints/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.pth \
    --format-only --options 'jsonfile_prefix=./pointpillars_nuscenes_results'
zhangwenwei's avatar
zhangwenwei committed
159
160
```

liyinhao's avatar
liyinhao committed
161
The generated results be under `./pointpillars_nuscenes_results` directory.
zhangwenwei's avatar
zhangwenwei committed
162

liyinhao's avatar
liyinhao committed
163
6. Test SECOND on KITTI with 8 GPUs, and generate the pkl files and submission datas to be submit to the official evaluation server.
zhangwenwei's avatar
zhangwenwei committed
164
165

```shell
liyinhao's avatar
liyinhao committed
166
167
168
./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} configs/second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py \
    checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-3class_20200620_230238-9208083a.pth \
    --format-only --options 'pklfile_prefix=./second_kitti_results' 'submission_prefix=./second_kitti_results'
zhangwenwei's avatar
zhangwenwei committed
169
170
```

liyinhao's avatar
liyinhao committed
171
The generated results be under `./second_kitti_results` directory.
zhangwenwei's avatar
zhangwenwei committed
172

liyinhao's avatar
liyinhao committed
173
174
175
176
177
178
179
180
181
182
183
184
### Visualization

To see the SUNRGBD, ScanNet or KITTI points and detection results, you can run the following command

 ```bash
 python tools/test.py ${CONFIG_FILE} ${CKPT_PATH} --show --show-dir ${SHOW_DIR}
  ```

Aftering running this command, plotted results ***_points.obj and ***_pred.ply files in `${SHOW_DIR}`.

To see the points, detection results and ground truth of SUNRGBD, ScanNet or KITTI during evaluation time, you can run the following command
```bash
liyinhao's avatar
liyinhao committed
185
python tools/test.py ${CONFIG_FILE} ${CKPT_PATH} --eval 'mAP' --options 'show=True' 'out_dir=${SHOW_DIR}'
liyinhao's avatar
liyinhao committed
186
187
188
189
190
191
```
After running this command, you will obtain ***_points.ob, ***_pred.ply files and ***_gt.ply in `${SHOW_DIR}`.

You can use 3D visualization software such as the [MeshLab](http://www.meshlab.net/) to open the these files under `${SHOW_DIR}` to see the 3D detection output. Specifically, open `***_points.obj` to see the input point cloud and open `***_pred.ply` to see the predicted 3D bounding boxes. This allows the inference and results generation be done in remote server and the users can open them on their host with GUI.

**Notice**: The visualization API is a little unstable since we plan to refactor these parts together with MMDetection in the future.
zhangwenwei's avatar
zhangwenwei committed
192

wuyuefeng's avatar
Demo  
wuyuefeng committed
193
### Point cloud demo
zhangwenwei's avatar
Doc  
zhangwenwei committed
194

wuyuefeng's avatar
Demo  
wuyuefeng committed
195
We provide a demo script to test a single sample.
zhangwenwei's avatar
Doc  
zhangwenwei committed
196
197

```shell
wuyuefeng's avatar
Demo  
wuyuefeng committed
198
python demo/pcd_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}]
zhangwenwei's avatar
Doc  
zhangwenwei committed
199
200
201
202
203
```

Examples:

```shell
wuyuefeng's avatar
Demo  
wuyuefeng committed
204
205
python demo/pcd_demo.py demo/kitti_000008.bin configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py \
    checkpoints/epoch_40.pth
zhangwenwei's avatar
zhangwenwei committed
206
207
```

zhangwenwei's avatar
zhangwenwei committed
208

zhangwenwei's avatar
zhangwenwei committed
209
210
211
212
213
214
### High-level APIs for testing images

#### Synchronous interface
Here is an example of building the model and test given images.

```python
zhangwenwei's avatar
Doc  
zhangwenwei committed
215
from mmdet.apis import init_detector, inference_detector
zhangwenwei's avatar
zhangwenwei committed
216
217
import mmcv

zhangwenwei's avatar
Doc  
zhangwenwei committed
218
config_file = 'configs/faster_rcnn_r50_fpn_1x_coco.py'
zhangwenwei's avatar
zhangwenwei committed
219
220
221
222
223
224
225
226
227
checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth'

# build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:0')

# test a single image and show the results
img = 'test.jpg'  # or img = mmcv.imread(img), which will only load it once
result = inference_detector(model, img)
# visualize the results in a new window
zhangwenwei's avatar
Doc  
zhangwenwei committed
228
model.show_result(img, result)
zhangwenwei's avatar
zhangwenwei committed
229
# or save the visualization results to image files
zhangwenwei's avatar
Doc  
zhangwenwei committed
230
model.show_result(img, result, out_file='result.jpg')
zhangwenwei's avatar
zhangwenwei committed
231
232
233
234
235

# test a video and show the results
video = mmcv.VideoReader('video.mp4')
for frame in video:
    result = inference_detector(model, frame)
zhangwenwei's avatar
Doc  
zhangwenwei committed
236
    model.show_result(frame, result, wait_time=1)
zhangwenwei's avatar
zhangwenwei committed
237
238
239
240
241
242
243
244
245
246
247
248
249
```

A notebook demo can be found in [demo/inference_demo.ipynb](https://github.com/open-mmlab/mmdetection/blob/master/demo/inference_demo.ipynb).

#### Asynchronous interface - supported for Python 3.7+

Async interface allows not to block CPU on GPU bound inference code and enables better CPU/GPU utilization for single threaded application. Inference can be done concurrently either between different input data samples or between different models of some inference pipeline.

See `tests/async_benchmark.py` to compare the speed of synchronous and asynchronous interfaces.

```python
import asyncio
import torch
zhangwenwei's avatar
Doc  
zhangwenwei committed
250
from mmdet.apis import init_detector, async_inference_detector
zhangwenwei's avatar
zhangwenwei committed
251
252
253
from mmdet.utils.contextmanagers import concurrent

async def main():
zhangwenwei's avatar
Doc  
zhangwenwei committed
254
    config_file = 'configs/faster_rcnn_r50_fpn_1x_coco.py'
zhangwenwei's avatar
zhangwenwei committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth'
    device = 'cuda:0'
    model = init_detector(config_file, checkpoint=checkpoint_file, device=device)

    # queue is used for concurrent inference of multiple images
    streamqueue = asyncio.Queue()
    # queue size defines concurrency level
    streamqueue_size = 3

    for _ in range(streamqueue_size):
        streamqueue.put_nowait(torch.cuda.Stream(device=device))

    # test a single image and show the results
    img = 'test.jpg'  # or img = mmcv.imread(img), which will only load it once

    async with concurrent(streamqueue):
        result = await async_inference_detector(model, img)

    # visualize the results in a new window
zhangwenwei's avatar
Doc  
zhangwenwei committed
274
    model.show_result(img, result)
zhangwenwei's avatar
zhangwenwei committed
275
    # or save the visualization results to image files
zhangwenwei's avatar
Doc  
zhangwenwei committed
276
    model.show_result(img, result, out_file='result.jpg')
zhangwenwei's avatar
zhangwenwei committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302


asyncio.run(main())

```


## Train a model

MMDetection implements distributed training and non-distributed training,
which uses `MMDistributedDataParallel` and `MMDataParallel` respectively.

All outputs (log files and checkpoints) will be saved to the working directory,
which is specified by `work_dir` in the config file.

By default we evaluate the model on the validation set after each epoch, you can change the evaluation interval by adding the interval argument in the training config.
```python
evaluation = dict(interval=12)  # This evaluate the model per 12 epoch.
```

**\*Important\***: The default learning rate in config files is for 8 GPUs and 2 img/gpu (batch size = 8*2 = 16).
According to the [Linear Scaling Rule](https://arxiv.org/abs/1706.02677), you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., lr=0.01 for 4 GPUs * 2 img/gpu and lr=0.08 for 16 GPUs * 4 img/gpu.

### Train with a single GPU

```shell
zhangwenwei's avatar
Doc  
zhangwenwei committed
303
python tools/train.py ${CONFIG_FILE} [optional arguments]
zhangwenwei's avatar
zhangwenwei committed
304
305
306
307
308
309
310
311
312
313
314
315
```

If you want to specify the working directory in the command, you can add an argument `--work_dir ${YOUR_WORK_DIR}`.

### Train with multiple GPUs

```shell
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]
```

Optional arguments are:

zhangwenwei's avatar
Doc  
zhangwenwei committed
316
317
318
- `--no-validate` (**not suggested**): By default, the codebase will perform evaluation at every k (default value is 1, which can be modified like [this](https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py#L174)) epochs during the training. To disable this behavior, use `--no-validate`.
- `--work-dir ${WORK_DIR}`: Override the working directory specified in the config file.
- `--resume-from ${CHECKPOINT_FILE}`: Resume from a previous checkpoint file.
zhangwenwei's avatar
zhangwenwei committed
319

zhangwenwei's avatar
Doc  
zhangwenwei committed
320
321
322
Difference between `resume-from` and `load-from`:
`resume-from` loads both the model weights and optimizer status, and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that is interrupted accidentally.
`load-from` only loads the model weights and the training epoch starts from 0. It is usually used for finetuning.
zhangwenwei's avatar
zhangwenwei committed
323
324
325
326
327
328

### Train with multiple machines

If you run MMDetection on a cluster managed with [slurm](https://slurm.schedmd.com/), you can use the script `slurm_train.sh`. (This script also supports single machine training.)

```shell
zhangwenwei's avatar
Doc  
zhangwenwei committed
329
[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR}
zhangwenwei's avatar
zhangwenwei committed
330
331
332
333
334
```

Here is an example of using 16 GPUs to train Mask R-CNN on the dev partition.

```shell
zhangwenwei's avatar
Doc  
zhangwenwei committed
335
GPUS=16 ./tools/slurm_train.sh dev mask_r50_1x configs/mask_rcnn_r50_fpn_1x_coco.py /nfs/xxxx/mask_rcnn_r50_fpn_1x
zhangwenwei's avatar
zhangwenwei committed
336
337
338
339
340
```

You can check [slurm_train.sh](https://github.com/open-mmlab/mmdetection/blob/master/tools/slurm_train.sh) for full arguments and environment variables.

If you have just multiple machines connected with ethernet, you can refer to
zhangwenwei's avatar
zhangwenwei committed
341
342
PyTorch [launch utility](https://pytorch.org/docs/stable/distributed_deprecated.html#launch-utility).
Usually it is slow if you do not have high speed networking like InfiniBand.
zhangwenwei's avatar
zhangwenwei committed
343
344
345
346
347
348
349
350
351
352
353
354
355

### Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs,
you need to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use `dist_train.sh` to launch training jobs, you can set the port in commands.

```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4
```

zhangwenwei's avatar
zhangwenwei committed
356
If you use launch training jobs with Slurm, you need to modify the config files (usually the 6th line from the bottom in config files) to set different communication ports.
zhangwenwei's avatar
zhangwenwei committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370

In `config1.py`,
```python
dist_params = dict(backend='nccl', port=29500)
```

In `config2.py`,
```python
dist_params = dict(backend='nccl', port=29501)
```

Then you can launch two jobs with `config1.py` ang `config2.py`.

```shell
zhangwenwei's avatar
Doc  
zhangwenwei committed
371
372
CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR}
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR}
zhangwenwei's avatar
zhangwenwei committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
```

## Useful tools

We provide lots of useful tools under `tools/` directory.

### Analyze logs

You can plot loss/mAP curves given a training log file. Run `pip install seaborn` first to install the dependency.

![loss curve image](../demo/loss_curve.png)

```shell
python tools/analyze_logs.py plot_curve [--keys ${KEYS}] [--title ${TITLE}] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}]
```

Examples:

- Plot the classification loss of some run.

```shell
python tools/analyze_logs.py plot_curve log.json --keys loss_cls --legend loss_cls
```

- Plot the classification and regression loss of some run, and save the figure to a pdf.

```shell
zhangwenwei's avatar
zhangwenwei committed
400
python tools/analyze_logs.py plot_curve log.json --keys loss_cls loss_bbox --out losses.pdf
zhangwenwei's avatar
zhangwenwei committed
401
402
403
404
405
406
407
408
409
410
411
```

- Compare the bbox mAP of two runs in the same figure.

```shell
python tools/analyze_logs.py plot_curve log1.json log2.json --keys bbox_mAP --legend run1 run2
```

You can also compute the average training speed.

```shell
zhangwenwei's avatar
zhangwenwei committed
412
python tools/analyze_logs.py cal_train_time log.json [--include-outliers]
zhangwenwei's avatar
zhangwenwei committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
```

The output is expected to be like the following.

```
-----Analyze train time of work_dirs/some_exp/20190611_192040.log.json-----
slowest epoch 11, average time is 1.2024
fastest epoch 1, average time is 1.1909
time std over epochs is 0.0028
average iter time: 1.1959 s/iter

```

### Publish a model

Before you upload a model to AWS, you may want to
(1) convert model weights to CPU tensors, (2) delete the optimizer states and
(3) compute the hash of the checkpoint file and append the hash id to the filename.

```shell
python tools/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}
```

E.g.,

```shell
python tools/publish_model.py work_dirs/faster_rcnn/latest.pth faster_rcnn_r50_fpn_1x_20190801.pth
```

The final output filename will be `faster_rcnn_r50_fpn_1x_20190801-{hash id}.pth`.

### Test the robustness of detectors

zhangwenwei's avatar
Doc  
zhangwenwei committed
446
Please refer to [robustness_benchmarking.md](robustness_benchmarking.md).
zhangwenwei's avatar
zhangwenwei committed
447

zhangwenwei's avatar
Doc  
zhangwenwei committed
448
### Convert to ONNX (experimental)
zhangwenwei's avatar
zhangwenwei committed
449

zhangwenwei's avatar
Doc  
zhangwenwei committed
450
We provide a script to convert model to [ONNX](https://github.com/onnx/onnx) format. The converted model could be visualized by tools like [Netron](https://github.com/lutzroeder/netron).
zhangwenwei's avatar
zhangwenwei committed
451

zhangwenwei's avatar
Doc  
zhangwenwei committed
452
453
```shell
python tools/pytorch2onnx.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --out ${ONNX_FILE} [--shape ${INPUT_SHAPE}]
zhangwenwei's avatar
zhangwenwei committed
454
455
```

zhangwenwei's avatar
Doc  
zhangwenwei committed
456
**Note**: This tool is still experimental. Customized operators are not supported for now. We set `use_torchvision=True` on-the-fly for `RoIPool` and `RoIAlign`.
zhangwenwei's avatar
zhangwenwei committed
457

zhangwenwei's avatar
Doc  
zhangwenwei committed
458
## Tutorials
zhangwenwei's avatar
zhangwenwei committed
459

zhangwenwei's avatar
zhangwenwei committed
460
461
Currently, we provide four tutorials for users to [finetune models](tutorials/finetune.md), [add new dataset](tutorials/new_dataset.md), [design data pipeline](tutorials/data_pipeline.md) and [add new modules](tutorials/new_modules.md).
We also provide a full description about the [config system](config.md).