pointnet2_msg_16x2_scannet-3d-20class.py 1.34 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
_base_ = [
    '../_base_/datasets/scannet_seg-3d-20class.py',
    '../_base_/models/pointnet2_msg.py', '../_base_/default_runtime.py'
]

# data settings
data = dict(samples_per_gpu=16)
evaluation = dict(interval=5)

# model settings
model = dict(
    decode_head=dict(
        num_classes=20,
        ignore_index=20,
        # `class_weight` is generated in data pre-processing, saved in
        # `data/scannet/seg_info/train_label_weight.npy`
        # you can copy paste the values here, or input the file path as
        # `class_weight=data/scannet/seg_info/train_label_weight.npy`
        loss_decode=dict(class_weight=[
            2.389689, 2.7215734, 4.5944676, 4.8543367, 4.096086, 4.907941,
            4.690836, 4.512031, 4.623311, 4.9242644, 5.358117, 5.360071,
            5.019636, 4.967126, 5.3502126, 5.4023647, 5.4027233, 5.4169416,
            5.3954206, 4.6971426
        ])),
    test_cfg=dict(
        num_points=8192,
        block_size=1.5,
        sample_rate=0.5,
        use_normalized_coord=False,
        batch_size=24))

# optimizer
lr = 0.001  # max learning rate
optimizer = dict(type='Adam', lr=lr, weight_decay=1e-4)
optimizer_config = dict(grad_clip=None)
lr_config = dict(policy='CosineAnnealing', warmup=None, min_lr=1e-5)

# runtime settings
checkpoint_config = dict(interval=5)
runner = dict(type='EpochBasedRunner', max_epochs=150)