_base_ = [ '../_base_/datasets/scannet_seg-3d-20class.py', '../_base_/models/pointnet2_msg.py', '../_base_/default_runtime.py' ] # data settings data = dict(samples_per_gpu=16) evaluation = dict(interval=5) # model settings model = dict( decode_head=dict( num_classes=20, ignore_index=20, # `class_weight` is generated in data pre-processing, saved in # `data/scannet/seg_info/train_label_weight.npy` # you can copy paste the values here, or input the file path as # `class_weight=data/scannet/seg_info/train_label_weight.npy` loss_decode=dict(class_weight=[ 2.389689, 2.7215734, 4.5944676, 4.8543367, 4.096086, 4.907941, 4.690836, 4.512031, 4.623311, 4.9242644, 5.358117, 5.360071, 5.019636, 4.967126, 5.3502126, 5.4023647, 5.4027233, 5.4169416, 5.3954206, 4.6971426 ])), test_cfg=dict( num_points=8192, block_size=1.5, sample_rate=0.5, use_normalized_coord=False, batch_size=24)) # optimizer lr = 0.001 # max learning rate optimizer = dict(type='Adam', lr=lr, weight_decay=1e-4) optimizer_config = dict(grad_clip=None) lr_config = dict(policy='CosineAnnealing', warmup=None, min_lr=1e-5) # runtime settings checkpoint_config = dict(interval=5) runner = dict(type='EpochBasedRunner', max_epochs=150)