base_points.py 16 KB
Newer Older
1
import numpy as np
2
import torch
3
import warnings
4
5
6
7
8
9
10
11
12
13
from abc import abstractmethod


class BasePoints(object):
    """Base class for Points.

    Args:
        tensor (torch.Tensor | np.ndarray | list): a N x points_dim matrix.
        points_dim (int): Number of the dimension of a point.
            Each row is (x, y, z). Default to 3.
14
        attribute_dims (dict): Dictionary to indicate the meaning of extra
15
16
17
18
19
20
            dimension. Default to None.

    Attributes:
        tensor (torch.Tensor): Float matrix of N x points_dim.
        points_dim (int): Integer indicating the dimension of a point.
            Each row is (x, y, z, ...).
21
        attribute_dims (bool): Dictionary to indicate the meaning of extra
22
            dimension. Default to None.
23
        rotation_axis (int): Default rotation axis for points rotation.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    """

    def __init__(self, tensor, points_dim=3, attribute_dims=None):
        if isinstance(tensor, torch.Tensor):
            device = tensor.device
        else:
            device = torch.device('cpu')
        tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
        if tensor.numel() == 0:
            # Use reshape, so we don't end up creating a new tensor that
            # does not depend on the inputs (and consequently confuses jit)
            tensor = tensor.reshape((0, points_dim)).to(
                dtype=torch.float32, device=device)
        assert tensor.dim() == 2 and tensor.size(-1) == \
            points_dim, tensor.size()

        self.tensor = tensor
        self.points_dim = points_dim
        self.attribute_dims = attribute_dims
43
        self.rotation_axis = 0
44
45
46
47
48
49

    @property
    def coord(self):
        """torch.Tensor: Coordinates of each point with size (N, 3)."""
        return self.tensor[:, :3]

50
51
52
53
54
55
56
57
58
59
60
    @coord.setter
    def coord(self, tensor):
        """Set the coordinates of each point."""
        try:
            tensor = tensor.reshape(self.shape[0], 3)
        except (RuntimeError, ValueError):  # for torch.Tensor and np.ndarray
            raise ValueError(f'got unexpected shape {tensor.shape}')
        if not isinstance(tensor, torch.Tensor):
            tensor = self.tensor.new_tensor(tensor)
        self.tensor[:, :3] = tensor

61
62
63
64
65
66
67
68
69
    @property
    def height(self):
        """torch.Tensor: A vector with height of each point."""
        if self.attribute_dims is not None and \
                'height' in self.attribute_dims.keys():
            return self.tensor[:, self.attribute_dims['height']]
        else:
            return None

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    @height.setter
    def height(self, tensor):
        """Set the height of each point."""
        try:
            tensor = tensor.reshape(self.shape[0])
        except (RuntimeError, ValueError):  # for torch.Tensor and np.ndarray
            raise ValueError(f'got unexpected shape {tensor.shape}')
        if not isinstance(tensor, torch.Tensor):
            tensor = self.tensor.new_tensor(tensor)
        if self.attribute_dims is not None and \
                'height' in self.attribute_dims.keys():
            self.tensor[:, self.attribute_dims['height']] = tensor
        else:
            # add height attribute
            if self.attribute_dims is None:
                self.attribute_dims = dict()
            attr_dim = self.shape[1]
            self.tensor = torch.cat([self.tensor, tensor.unsqueeze(1)], dim=1)
            self.attribute_dims.update(dict(height=attr_dim))
            self.points_dim += 1

91
92
93
94
95
96
97
98
99
    @property
    def color(self):
        """torch.Tensor: A vector with color of each point."""
        if self.attribute_dims is not None and \
                'color' in self.attribute_dims.keys():
            return self.tensor[:, self.attribute_dims['color']]
        else:
            return None

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    @color.setter
    def color(self, tensor):
        """Set the color of each point."""
        try:
            tensor = tensor.reshape(self.shape[0], 3)
        except (RuntimeError, ValueError):  # for torch.Tensor and np.ndarray
            raise ValueError(f'got unexpected shape {tensor.shape}')
        if tensor.max() >= 256 or tensor.min() < 0:
            warnings.warn('point got color value beyond [0, 255]')
        if not isinstance(tensor, torch.Tensor):
            tensor = self.tensor.new_tensor(tensor)
        if self.attribute_dims is not None and \
                'color' in self.attribute_dims.keys():
            self.tensor[:, self.attribute_dims['color']] = tensor
        else:
            # add color attribute
            if self.attribute_dims is None:
                self.attribute_dims = dict()
            attr_dim = self.shape[1]
            self.tensor = torch.cat([self.tensor, tensor], dim=1)
            self.attribute_dims.update(
                dict(color=[attr_dim, attr_dim + 1, attr_dim + 2]))
            self.points_dim += 3

124
125
126
127
128
    @property
    def shape(self):
        """torch.Shape: Shape of points."""
        return self.tensor.shape

129
    def shuffle(self):
130
131
132
133
134
135
136
137
        """Shuffle the points.

        Returns:
            torch.Tensor: The shuffled index.
        """
        idx = torch.randperm(self.__len__(), device=self.tensor.device)
        self.tensor = self.tensor[idx]
        return idx
138

139
    def rotate(self, rotation, axis=None):
140
141
142
143
144
        """Rotate points with the given rotation matrix or angle.

        Args:
            rotation (float, np.ndarray, torch.Tensor): Rotation matrix
                or angle.
145
            axis (int): Axis to rotate at. Defaults to None.
146
147
148
149
        """
        if not isinstance(rotation, torch.Tensor):
            rotation = self.tensor.new_tensor(rotation)
        assert rotation.shape == torch.Size([3, 3]) or \
150
            rotation.numel() == 1, f'invalid rotation shape {rotation.shape}'
151

152
153
154
        if axis is None:
            axis = self.rotation_axis

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        if rotation.numel() == 1:
            rot_sin = torch.sin(rotation)
            rot_cos = torch.cos(rotation)
            if axis == 1:
                rot_mat_T = rotation.new_tensor([[rot_cos, 0, -rot_sin],
                                                 [0, 1, 0],
                                                 [rot_sin, 0, rot_cos]])
            elif axis == 2 or axis == -1:
                rot_mat_T = rotation.new_tensor([[rot_cos, -rot_sin, 0],
                                                 [rot_sin, rot_cos, 0],
                                                 [0, 0, 1]])
            elif axis == 0:
                rot_mat_T = rotation.new_tensor([[0, rot_cos, -rot_sin],
                                                 [0, rot_sin, rot_cos],
                                                 [1, 0, 0]])
            else:
                raise ValueError('axis should in range')
            rot_mat_T = rot_mat_T.T
        elif rotation.numel() == 9:
            rot_mat_T = rotation
        else:
            raise NotImplementedError
        self.tensor[:, :3] = self.tensor[:, :3] @ rot_mat_T

179
180
        return rot_mat_T

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    @abstractmethod
    def flip(self, bev_direction='horizontal'):
        """Flip the points in BEV along given BEV direction."""
        pass

    def translate(self, trans_vector):
        """Translate points with the given translation vector.

        Args:
            trans_vector (np.ndarray, torch.Tensor): Translation
                vector of size 3 or nx3.
        """
        if not isinstance(trans_vector, torch.Tensor):
            trans_vector = self.tensor.new_tensor(trans_vector)
        trans_vector = trans_vector.squeeze(0)
        if trans_vector.dim() == 1:
            assert trans_vector.shape[0] == 3
        elif trans_vector.dim() == 2:
            assert trans_vector.shape[0] == self.tensor.shape[0] and \
                trans_vector.shape[1] == 3
        else:
            raise NotImplementedError(
203
204
                f'Unsupported translation vector of shape {trans_vector.shape}'
            )
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        self.tensor[:, :3] += trans_vector

    def in_range_3d(self, point_range):
        """Check whether the points are in the given range.

        Args:
            point_range (list | torch.Tensor): The range of point
                (x_min, y_min, z_min, x_max, y_max, z_max)

        Note:
            In the original implementation of SECOND, checking whether
            a box in the range checks whether the points are in a convex
            polygon, we try to reduce the burden for simpler cases.

        Returns:
            torch.Tensor: A binary vector indicating whether each point is \
                inside the reference range.
        """
        in_range_flags = ((self.tensor[:, 0] > point_range[0])
                          & (self.tensor[:, 1] > point_range[1])
                          & (self.tensor[:, 2] > point_range[2])
                          & (self.tensor[:, 0] < point_range[3])
                          & (self.tensor[:, 1] < point_range[4])
                          & (self.tensor[:, 2] < point_range[5]))
        return in_range_flags

    @abstractmethod
    def in_range_bev(self, point_range):
        """Check whether the points are in the given range.

        Args:
            point_range (list | torch.Tensor): The range of point
                in order of (x_min, y_min, x_max, y_max).

        Returns:
            torch.Tensor: Indicating whether each point is inside \
                the reference range.
        """
        pass

    @abstractmethod
    def convert_to(self, dst, rt_mat=None):
        """Convert self to ``dst`` mode.

        Args:
            dst (:obj:`CoordMode`): The target Box mode.
            rt_mat (np.ndarray | torch.Tensor): The rotation and translation
                matrix between different coordinates. Defaults to None.
                The conversion from `src` coordinates to `dst` coordinates
                usually comes along the change of sensors, e.g., from camera
                to LiDAR. This requires a transformation matrix.

        Returns:
            :obj:`BasePoints`: The converted box of the same type \
                in the `dst` mode.
        """
        pass

    def scale(self, scale_factor):
        """Scale the points with horizontal and vertical scaling factors.

        Args:
            scale_factors (float): Scale factors to scale the points.
        """
        self.tensor[:, :3] *= scale_factor

    def __getitem__(self, item):
        """
        Note:
            The following usage are allowed:
            1. `new_points = points[3]`:
                return a `Points` that contains only one point.
            2. `new_points = points[2:10]`:
                return a slice of points.
            3. `new_points = points[vector]`:
                where vector is a torch.BoolTensor with `length = len(points)`.
                Nonzero elements in the vector will be selected.
282
283
            4. `new_points = points[3:11, vector]`:
                return a slice of points and attribute dims.
284
285
286
287
            Note that the returned Points might share storage with this Points,
            subject to Pytorch's indexing semantics.

        Returns:
288
289
            :obj:`BasePoints`: A new object of  \
                :class:`BasePoints` after indexing.
290
291
292
293
294
295
296
        """
        original_type = type(self)
        if isinstance(item, int):
            return original_type(
                self.tensor[item].view(1, -1),
                points_dim=self.points_dim,
                attribute_dims=self.attribute_dims)
297
298
299
        elif isinstance(item, tuple) and len(item) == 2:
            if isinstance(item[1], slice):
                start = 0 if item[1].start is None else item[1].start
300
301
                stop = self.tensor.shape[1] if \
                    item[1].stop is None else item[1].stop
302
                step = 1 if item[1].step is None else item[1].step
meng-zha's avatar
meng-zha committed
303
                item = list(item)
304
                item[1] = list(range(start, stop, step))
meng-zha's avatar
meng-zha committed
305
                item = tuple(item)
306
307
308
309
310
311
312
            p = self.tensor[item[0], item[1]]

            keep_dims = list(
                set(item[1]).intersection(set(range(3, self.tensor.shape[1]))))
            if self.attribute_dims is not None:
                attribute_dims = self.attribute_dims.copy()
                for key in self.attribute_dims.keys():
313
314
315
                    cur_attribute_dims = attribute_dims[key]
                    if isinstance(cur_attribute_dims, int):
                        cur_attribute_dims = [cur_attribute_dims]
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
                    intersect_attr = list(
                        set(cur_attribute_dims).intersection(set(keep_dims)))
                    if len(intersect_attr) == 1:
                        attribute_dims[key] = intersect_attr[0]
                    elif len(intersect_attr) > 1:
                        attribute_dims[key] = intersect_attr
                    else:
                        attribute_dims.pop(key)
            else:
                attribute_dims = None
        elif isinstance(item, (slice, np.ndarray, torch.Tensor)):
            p = self.tensor[item]
            attribute_dims = self.attribute_dims
        else:
            raise NotImplementedError(f'Invalid slice {item}!')

332
333
334
        assert p.dim() == 2, \
            f'Indexing on Points with {item} failed to return a matrix!'
        return original_type(
335
            p, points_dim=p.shape[1], attribute_dims=attribute_dims)
336
337
338
339
340
341
342
343
344
345
346
347
348
349

    def __len__(self):
        """int: Number of points in the current object."""
        return self.tensor.shape[0]

    def __repr__(self):
        """str: Return a strings that describes the object."""
        return self.__class__.__name__ + '(\n    ' + str(self.tensor) + ')'

    @classmethod
    def cat(cls, points_list):
        """Concatenate a list of Points into a single Points.

        Args:
350
            points_list (list[:obj:`BasePoints`]): List of points.
351
352

        Returns:
353
            :obj:`BasePoints`: The concatenated Points.
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        """
        assert isinstance(points_list, (list, tuple))
        if len(points_list) == 0:
            return cls(torch.empty(0))
        assert all(isinstance(points, cls) for points in points_list)

        # use torch.cat (v.s. layers.cat)
        # so the returned points never share storage with input
        cat_points = cls(
            torch.cat([p.tensor for p in points_list], dim=0),
            points_dim=points_list[0].tensor.shape[1],
            attribute_dims=points_list[0].attribute_dims)
        return cat_points

    def to(self, device):
        """Convert current points to a specific device.

        Args:
            device (str | :obj:`torch.device`): The name of the device.

        Returns:
            :obj:`BasePoints`: A new boxes object on the \
                specific device.
        """
        original_type = type(self)
        return original_type(
            self.tensor.to(device),
            points_dim=self.points_dim,
            attribute_dims=self.attribute_dims)

    def clone(self):
        """Clone the Points.

        Returns:
            :obj:`BasePoints`: Box object with the same properties \
                as self.
        """
        original_type = type(self)
        return original_type(
            self.tensor.clone(),
            points_dim=self.points_dim,
            attribute_dims=self.attribute_dims)

    @property
    def device(self):
        """str: The device of the points are on."""
        return self.tensor.device

    def __iter__(self):
        """Yield a point as a Tensor of shape (4,) at a time.

        Returns:
            torch.Tensor: A point of shape (4,).
        """
        yield from self.tensor

    def new_point(self, data):
        """Create a new point object with data.

        The new point and its tensor has the similar properties \
            as self and self.tensor, respectively.

        Args:
            data (torch.Tensor | numpy.array | list): Data to be copied.

        Returns:
            :obj:`BasePoints`: A new point object with ``data``, \
                the object's other properties are similar to ``self``.
        """
        new_tensor = self.tensor.new_tensor(data) \
            if not isinstance(data, torch.Tensor) else data.to(self.device)
        original_type = type(self)
        return original_type(
            new_tensor,
            points_dim=self.points_dim,
            attribute_dims=self.attribute_dims)