base_points.py 11.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import torch
from abc import abstractmethod


class BasePoints(object):
    """Base class for Points.

    Args:
        tensor (torch.Tensor | np.ndarray | list): a N x points_dim matrix.
        points_dim (int): Number of the dimension of a point.
            Each row is (x, y, z). Default to 3.
        attribute_dims (dict): Dictinory to indicate the meaning of extra
            dimension. Default to None.

    Attributes:
        tensor (torch.Tensor): Float matrix of N x points_dim.
        points_dim (int): Integer indicating the dimension of a point.
            Each row is (x, y, z, ...).
        attribute_dims (bool): Dictinory to indicate the meaning of extra
            dimension. Default to None.
    """

    def __init__(self, tensor, points_dim=3, attribute_dims=None):
        if isinstance(tensor, torch.Tensor):
            device = tensor.device
        else:
            device = torch.device('cpu')
        tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
        if tensor.numel() == 0:
            # Use reshape, so we don't end up creating a new tensor that
            # does not depend on the inputs (and consequently confuses jit)
            tensor = tensor.reshape((0, points_dim)).to(
                dtype=torch.float32, device=device)
        assert tensor.dim() == 2 and tensor.size(-1) == \
            points_dim, tensor.size()

        self.tensor = tensor
        self.points_dim = points_dim
        self.attribute_dims = attribute_dims

    @property
    def coord(self):
        """torch.Tensor: Coordinates of each point with size (N, 3)."""
        return self.tensor[:, :3]

    @property
    def height(self):
        """torch.Tensor: A vector with height of each point."""
        if self.attribute_dims is not None and \
                'height' in self.attribute_dims.keys():
            return self.tensor[:, self.attribute_dims['height']]
        else:
            return None

    @property
    def color(self):
        """torch.Tensor: A vector with color of each point."""
        if self.attribute_dims is not None and \
                'color' in self.attribute_dims.keys():
            return self.tensor[:, self.attribute_dims['color']]
        else:
            return None

    def shuffle(self):
        """Shuffle the points."""
        self.tensor = self.tensor[torch.randperm(
            self.__len__(), device=self.tensor.device)]

    def rotate(self, rotation, axis=2):
        """Rotate points with the given rotation matrix or angle.

        Args:
            rotation (float, np.ndarray, torch.Tensor): Rotation matrix
                or angle.
            axis (int): Axis to rotate at. Defaults to 2.
        """
        if not isinstance(rotation, torch.Tensor):
            rotation = self.tensor.new_tensor(rotation)
        assert rotation.shape == torch.Size([3, 3]) or \
            rotation.numel() == 1

        if rotation.numel() == 1:
            rot_sin = torch.sin(rotation)
            rot_cos = torch.cos(rotation)
            if axis == 1:
                rot_mat_T = rotation.new_tensor([[rot_cos, 0, -rot_sin],
                                                 [0, 1, 0],
                                                 [rot_sin, 0, rot_cos]])
            elif axis == 2 or axis == -1:
                rot_mat_T = rotation.new_tensor([[rot_cos, -rot_sin, 0],
                                                 [rot_sin, rot_cos, 0],
                                                 [0, 0, 1]])
            elif axis == 0:
                rot_mat_T = rotation.new_tensor([[0, rot_cos, -rot_sin],
                                                 [0, rot_sin, rot_cos],
                                                 [1, 0, 0]])
            else:
                raise ValueError('axis should in range')
            rot_mat_T = rot_mat_T.T
        elif rotation.numel() == 9:
            rot_mat_T = rotation
        else:
            raise NotImplementedError
        self.tensor[:, :3] = self.tensor[:, :3] @ rot_mat_T

    @abstractmethod
    def flip(self, bev_direction='horizontal'):
        """Flip the points in BEV along given BEV direction."""
        pass

    def translate(self, trans_vector):
        """Translate points with the given translation vector.

        Args:
            trans_vector (np.ndarray, torch.Tensor): Translation
                vector of size 3 or nx3.
        """
        if not isinstance(trans_vector, torch.Tensor):
            trans_vector = self.tensor.new_tensor(trans_vector)
        trans_vector = trans_vector.squeeze(0)
        if trans_vector.dim() == 1:
            assert trans_vector.shape[0] == 3
        elif trans_vector.dim() == 2:
            assert trans_vector.shape[0] == self.tensor.shape[0] and \
                trans_vector.shape[1] == 3
        else:
            raise NotImplementedError(
                'Unsupported translation vector of shape {}'.format(
                    trans_vector.shape))
        self.tensor[:, :3] += trans_vector

    def in_range_3d(self, point_range):
        """Check whether the points are in the given range.

        Args:
            point_range (list | torch.Tensor): The range of point
                (x_min, y_min, z_min, x_max, y_max, z_max)

        Note:
            In the original implementation of SECOND, checking whether
            a box in the range checks whether the points are in a convex
            polygon, we try to reduce the burden for simpler cases.

        Returns:
            torch.Tensor: A binary vector indicating whether each point is \
                inside the reference range.
        """
        in_range_flags = ((self.tensor[:, 0] > point_range[0])
                          & (self.tensor[:, 1] > point_range[1])
                          & (self.tensor[:, 2] > point_range[2])
                          & (self.tensor[:, 0] < point_range[3])
                          & (self.tensor[:, 1] < point_range[4])
                          & (self.tensor[:, 2] < point_range[5]))
        return in_range_flags

    @abstractmethod
    def in_range_bev(self, point_range):
        """Check whether the points are in the given range.

        Args:
            point_range (list | torch.Tensor): The range of point
                in order of (x_min, y_min, x_max, y_max).

        Returns:
            torch.Tensor: Indicating whether each point is inside \
                the reference range.
        """
        pass

    @abstractmethod
    def convert_to(self, dst, rt_mat=None):
        """Convert self to ``dst`` mode.

        Args:
            dst (:obj:`CoordMode`): The target Box mode.
            rt_mat (np.ndarray | torch.Tensor): The rotation and translation
                matrix between different coordinates. Defaults to None.
                The conversion from `src` coordinates to `dst` coordinates
                usually comes along the change of sensors, e.g., from camera
                to LiDAR. This requires a transformation matrix.

        Returns:
            :obj:`BasePoints`: The converted box of the same type \
                in the `dst` mode.
        """
        pass

    def scale(self, scale_factor):
        """Scale the points with horizontal and vertical scaling factors.

        Args:
            scale_factors (float): Scale factors to scale the points.
        """
        self.tensor[:, :3] *= scale_factor

    def __getitem__(self, item):
        """
        Note:
            The following usage are allowed:
            1. `new_points = points[3]`:
                return a `Points` that contains only one point.
            2. `new_points = points[2:10]`:
                return a slice of points.
            3. `new_points = points[vector]`:
                where vector is a torch.BoolTensor with `length = len(points)`.
                Nonzero elements in the vector will be selected.
            Note that the returned Points might share storage with this Points,
            subject to Pytorch's indexing semantics.

        Returns:
            :obj:`BaseInstancesPints`: A new object of  \
                :class:`BaseInstancesPints` after indexing.
        """
        original_type = type(self)
        if isinstance(item, int):
            return original_type(
                self.tensor[item].view(1, -1),
                points_dim=self.points_dim,
                attribute_dims=self.attribute_dims)
        p = self.tensor[item]
        assert p.dim() == 2, \
            f'Indexing on Points with {item} failed to return a matrix!'
        return original_type(
            p, points_dim=self.points_dim, attribute_dims=self.attribute_dims)

    def __len__(self):
        """int: Number of points in the current object."""
        return self.tensor.shape[0]

    def __repr__(self):
        """str: Return a strings that describes the object."""
        return self.__class__.__name__ + '(\n    ' + str(self.tensor) + ')'

    @classmethod
    def cat(cls, points_list):
        """Concatenate a list of Points into a single Points.

        Args:
            points_list (list[:obj:`BaseInstancesPoints`]): List of points.

        Returns:
            :obj:`BaseInstancesPoints`: The concatenated Points.
        """
        assert isinstance(points_list, (list, tuple))
        if len(points_list) == 0:
            return cls(torch.empty(0))
        assert all(isinstance(points, cls) for points in points_list)

        # use torch.cat (v.s. layers.cat)
        # so the returned points never share storage with input
        cat_points = cls(
            torch.cat([p.tensor for p in points_list], dim=0),
            points_dim=points_list[0].tensor.shape[1],
            attribute_dims=points_list[0].attribute_dims)
        return cat_points

    def to(self, device):
        """Convert current points to a specific device.

        Args:
            device (str | :obj:`torch.device`): The name of the device.

        Returns:
            :obj:`BasePoints`: A new boxes object on the \
                specific device.
        """
        original_type = type(self)
        return original_type(
            self.tensor.to(device),
            points_dim=self.points_dim,
            attribute_dims=self.attribute_dims)

    def clone(self):
        """Clone the Points.

        Returns:
            :obj:`BasePoints`: Box object with the same properties \
                as self.
        """
        original_type = type(self)
        return original_type(
            self.tensor.clone(),
            points_dim=self.points_dim,
            attribute_dims=self.attribute_dims)

    @property
    def device(self):
        """str: The device of the points are on."""
        return self.tensor.device

    def __iter__(self):
        """Yield a point as a Tensor of shape (4,) at a time.

        Returns:
            torch.Tensor: A point of shape (4,).
        """
        yield from self.tensor

    def new_point(self, data):
        """Create a new point object with data.

        The new point and its tensor has the similar properties \
            as self and self.tensor, respectively.

        Args:
            data (torch.Tensor | numpy.array | list): Data to be copied.

        Returns:
            :obj:`BasePoints`: A new point object with ``data``, \
                the object's other properties are similar to ``self``.
        """
        new_tensor = self.tensor.new_tensor(data) \
            if not isinstance(data, torch.Tensor) else data.to(self.device)
        original_type = type(self)
        return original_type(
            new_tensor,
            points_dim=self.points_dim,
            attribute_dims=self.attribute_dims)