nuscenes_dataset.py 18.2 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
import os.path as osp
import tempfile

import mmcv
import numpy as np
import pyquaternion
from nuscenes.utils.data_classes import Box as NuScenesBox

from mmdet.datasets import DATASETS
liyinhao's avatar
liyinhao committed
10
11
from ..core import show_result
from ..core.bbox import Box3DMode, LiDARInstance3DBoxes
zhangwenwei's avatar
zhangwenwei committed
12
from .custom_3d import Custom3DDataset
zhangwenwei's avatar
zhangwenwei committed
13
14


15
@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
16
class NuScenesDataset(Custom3DDataset):
wangtai's avatar
wangtai committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    """NuScenes Dataset

    This class serves as the API for experiments on the NuScenes Dataset.

    Please refer to `<https://www.nuscenes.org/download>`_for data
    downloading. It is recommended to symlink the dataset root to
    $MMDETECTION3D/data and organize them as the doc shows.

    Args:
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        data_root (str): Path of dataset root.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        load_interval (int, optional): Interval of loading the dataset. It is
            used to uniformly sample the dataset. Defaults to 1.
        with_velocity (bool, optional): Whether include velocity prediction
            into the experiments. Defaults to True.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'LiDAR' in this dataset. Available options includes

            - 'LiDAR': box in LiDAR coordinates
            - 'Depth': box in depth coordinates, usually for indoor dataset
            - 'Camera': box in camera coordinates
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
        eval_version (bool, optional): Configuration version of evaluation.
            Defaults to  'detection_cvpr_2019'.
    """
zhangwenwei's avatar
zhangwenwei committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    NameMapping = {
        'movable_object.barrier': 'barrier',
        'vehicle.bicycle': 'bicycle',
        'vehicle.bus.bendy': 'bus',
        'vehicle.bus.rigid': 'bus',
        'vehicle.car': 'car',
        'vehicle.construction': 'construction_vehicle',
        'vehicle.motorcycle': 'motorcycle',
        'human.pedestrian.adult': 'pedestrian',
        'human.pedestrian.child': 'pedestrian',
        'human.pedestrian.construction_worker': 'pedestrian',
        'human.pedestrian.police_officer': 'pedestrian',
        'movable_object.trafficcone': 'traffic_cone',
        'vehicle.trailer': 'trailer',
        'vehicle.truck': 'truck'
    }
    DefaultAttribute = {
        'car': 'vehicle.parked',
        'pedestrian': 'pedestrian.moving',
        'trailer': 'vehicle.parked',
        'truck': 'vehicle.parked',
        'bus': 'vehicle.moving',
        'motorcycle': 'cycle.without_rider',
        'construction_vehicle': 'vehicle.parked',
        'bicycle': 'cycle.without_rider',
        'barrier': '',
        'traffic_cone': '',
    }
    AttrMapping = {
        'cycle.with_rider': 0,
        'cycle.without_rider': 1,
        'pedestrian.moving': 2,
        'pedestrian.standing': 3,
        'pedestrian.sitting_lying_down': 4,
        'vehicle.moving': 5,
        'vehicle.parked': 6,
        'vehicle.stopped': 7,
    }
    AttrMapping_rev = [
        'cycle.with_rider',
        'cycle.without_rider',
        'pedestrian.moving',
        'pedestrian.standing',
        'pedestrian.sitting_lying_down',
        'vehicle.moving',
        'vehicle.parked',
        'vehicle.stopped',
    ]
    CLASSES = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle',
               'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
               'barrier')

    def __init__(self,
                 ann_file,
                 pipeline=None,
zhangwenwei's avatar
zhangwenwei committed
108
109
                 data_root=None,
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
110
111
112
                 load_interval=1,
                 with_velocity=True,
                 modality=None,
113
114
115
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
                 test_mode=False,
zhangwenwei's avatar
zhangwenwei committed
116
                 eval_version='detection_cvpr_2019'):
zhangwenwei's avatar
zhangwenwei committed
117
        self.load_interval = load_interval
zhangwenwei's avatar
zhangwenwei committed
118
119
120
121
122
123
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
124
125
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
zhangwenwei's avatar
zhangwenwei committed
126
            test_mode=test_mode)
zhangwenwei's avatar
zhangwenwei committed
127
128
129
130
131
132

        self.with_velocity = with_velocity
        self.eval_version = eval_version
        from nuscenes.eval.detection.config import config_factory
        self.eval_detection_configs = config_factory(self.eval_version)

zhangwenwei's avatar
zhangwenwei committed
133
134
        if self.modality is None:
            self.modality = dict(
zhangwenwei's avatar
zhangwenwei committed
135
136
137
138
139
140
141
                use_camera=False,
                use_lidar=True,
                use_radar=False,
                use_map=False,
                use_external=False,
            )

zhangwenwei's avatar
zhangwenwei committed
142
143
144
145
146
147
148
    def load_annotations(self, ann_file):
        data = mmcv.load(ann_file)
        data_infos = list(sorted(data['infos'], key=lambda e: e['timestamp']))
        data_infos = data_infos[::self.load_interval]
        self.metadata = data['metadata']
        self.version = self.metadata['version']
        return data_infos
zhangwenwei's avatar
zhangwenwei committed
149

zhangwenwei's avatar
zhangwenwei committed
150
    def get_data_info(self, index):
zhangwenwei's avatar
zhangwenwei committed
151
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
152

zhangwenwei's avatar
zhangwenwei committed
153
        # standard protocal modified from SECOND.Pytorch
zhangwenwei's avatar
zhangwenwei committed
154
155
        input_dict = dict(
            sample_idx=info['token'],
zhangwenwei's avatar
zhangwenwei committed
156
157
158
            pts_filename=info['lidar_path'],
            sweeps=info['sweeps'],
            timestamp=info['timestamp'] / 1e6,
zhangwenwei's avatar
zhangwenwei committed
159
160
161
162
163
164
        )

        if self.modality['use_camera']:
            image_paths = []
            lidar2img_rts = []
            for cam_type, cam_info in info['cams'].items():
zhangwenwei's avatar
zhangwenwei committed
165
                image_paths.append(cam_info['data_path'])
zhangwenwei's avatar
zhangwenwei committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
                # obtain lidar to image transformation matrix
                lidar2cam_r = np.linalg.inv(cam_info['sensor2lidar_rotation'])
                lidar2cam_t = cam_info[
                    'sensor2lidar_translation'] @ lidar2cam_r.T
                lidar2cam_rt = np.eye(4)
                lidar2cam_rt[:3, :3] = lidar2cam_r.T
                lidar2cam_rt[3, :3] = -lidar2cam_t
                intrinsic = cam_info['cam_intrinsic']
                viewpad = np.eye(4)
                viewpad[:intrinsic.shape[0], :intrinsic.shape[1]] = intrinsic
                lidar2img_rt = (viewpad @ lidar2cam_rt.T)
                lidar2img_rts.append(lidar2img_rt)

            input_dict.update(
                dict(
zhangwenwei's avatar
zhangwenwei committed
181
                    img_filename=image_paths,
zhangwenwei's avatar
zhangwenwei committed
182
183
184
                    lidar2img=lidar2img_rts,
                ))

zhangwenwei's avatar
zhangwenwei committed
185
        if not self.test_mode:
zhangwenwei's avatar
zhangwenwei committed
186
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
187
            input_dict['ann_info'] = annos
zhangwenwei's avatar
zhangwenwei committed
188
189
190
191

        return input_dict

    def get_ann_info(self, index):
zhangwenwei's avatar
zhangwenwei committed
192
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
193
194
195
196
        # filter out bbox containing no points
        mask = info['num_lidar_pts'] > 0
        gt_bboxes_3d = info['gt_boxes'][mask]
        gt_names_3d = info['gt_names'][mask]
zhangwenwei's avatar
zhangwenwei committed
197
198
199
200
201
202
203
        gt_labels_3d = []
        for cat in gt_names_3d:
            if cat in self.CLASSES:
                gt_labels_3d.append(self.CLASSES.index(cat))
            else:
                gt_labels_3d.append(-1)
        gt_labels_3d = np.array(gt_labels_3d)
zhangwenwei's avatar
zhangwenwei committed
204
205
206
207
208
209
210

        if self.with_velocity:
            gt_velocity = info['gt_velocity'][mask]
            nan_mask = np.isnan(gt_velocity[:, 0])
            gt_velocity[nan_mask] = [0.0, 0.0]
            gt_bboxes_3d = np.concatenate([gt_bboxes_3d, gt_velocity], axis=-1)

wangtai's avatar
wangtai committed
211
        # the nuscenes box center is [0.5, 0.5, 0.5], we change it to be
wuyuefeng's avatar
wuyuefeng committed
212
        # the same as KITTI (0.5, 0.5, 0)
zhangwenwei's avatar
zhangwenwei committed
213
214
215
        gt_bboxes_3d = LiDARInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
wuyuefeng's avatar
wuyuefeng committed
216
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)
zhangwenwei's avatar
zhangwenwei committed
217

zhangwenwei's avatar
zhangwenwei committed
218
219
        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
220
            gt_labels_3d=gt_labels_3d,
liyinhao's avatar
liyinhao committed
221
            gt_names=gt_names_3d)
zhangwenwei's avatar
zhangwenwei committed
222
223
224
225
        return anns_results

    def _format_bbox(self, results, jsonfile_prefix=None):
        nusc_annos = {}
zhangwenwei's avatar
zhangwenwei committed
226
        mapped_class_names = self.CLASSES
zhangwenwei's avatar
zhangwenwei committed
227

zhangwenwei's avatar
zhangwenwei committed
228
        print('Start to convert detection format...')
zhangwenwei's avatar
zhangwenwei committed
229
        for sample_id, det in enumerate(mmcv.track_iter_progress(results)):
zhangwenwei's avatar
zhangwenwei committed
230
            annos = []
zhangwenwei's avatar
zhangwenwei committed
231
232
233
234
            boxes = output_to_nusc_box(det)
            sample_token = self.data_infos[sample_id]['token']
            boxes = lidar_nusc_box_to_global(self.data_infos[sample_id], boxes,
                                             mapped_class_names,
zhangwenwei's avatar
zhangwenwei committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
                                             self.eval_detection_configs,
                                             self.eval_version)
            for i, box in enumerate(boxes):
                name = mapped_class_names[box.label]
                if np.sqrt(box.velocity[0]**2 + box.velocity[1]**2) > 0.2:
                    if name in [
                            'car',
                            'construction_vehicle',
                            'bus',
                            'truck',
                            'trailer',
                    ]:
                        attr = 'vehicle.moving'
                    elif name in ['bicycle', 'motorcycle']:
                        attr = 'cycle.with_rider'
                    else:
                        attr = NuScenesDataset.DefaultAttribute[name]
                else:
                    if name in ['pedestrian']:
                        attr = 'pedestrian.standing'
                    elif name in ['bus']:
                        attr = 'vehicle.stopped'
                    else:
                        attr = NuScenesDataset.DefaultAttribute[name]

                nusc_anno = dict(
zhangwenwei's avatar
zhangwenwei committed
261
                    sample_token=sample_token,
zhangwenwei's avatar
zhangwenwei committed
262
263
264
265
266
267
268
269
                    translation=box.center.tolist(),
                    size=box.wlh.tolist(),
                    rotation=box.orientation.elements.tolist(),
                    velocity=box.velocity[:2].tolist(),
                    detection_name=name,
                    detection_score=box.score,
                    attribute_name=attr)
                annos.append(nusc_anno)
zhangwenwei's avatar
zhangwenwei committed
270
            nusc_annos[sample_token] = annos
zhangwenwei's avatar
zhangwenwei committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        nusc_submissions = {
            'meta': self.modality,
            'results': nusc_annos,
        }

        mmcv.mkdir_or_exist(jsonfile_prefix)
        res_path = osp.join(jsonfile_prefix, 'results_nusc.json')
        print('Results writes to', res_path)
        mmcv.dump(nusc_submissions, res_path)
        return res_path

    def _evaluate_single(self,
                         result_path,
                         logger=None,
                         metric='bbox',
                         result_name='pts_bbox'):
        from nuscenes import NuScenes
        from nuscenes.eval.detection.evaluate import NuScenesEval

        output_dir = osp.join(*osp.split(result_path)[:-1])
        nusc = NuScenes(
            version=self.version, dataroot=self.data_root, verbose=False)
        eval_set_map = {
            'v1.0-mini': 'mini_train',
            'v1.0-trainval': 'val',
        }
        nusc_eval = NuScenesEval(
            nusc,
            config=self.eval_detection_configs,
            result_path=result_path,
            eval_set=eval_set_map[self.version],
            output_dir=output_dir,
            verbose=False)
        nusc_eval.main(render_curves=False)

        # record metrics
        metrics = mmcv.load(osp.join(output_dir, 'metrics_summary.json'))
        detail = dict()
wangtai's avatar
wangtai committed
309
        metric_prefix = f'{result_name}_NuScenes'
zhangwenwei's avatar
zhangwenwei committed
310
        for name in self.CLASSES:
zhangwenwei's avatar
zhangwenwei committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
            for k, v in metrics['label_aps'][name].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}_AP_dist_{}'.format(metric_prefix, name, k)] = val
            for k, v in metrics['label_tp_errors'][name].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}_{}'.format(metric_prefix, name, k)] = val

        detail['{}/NDS'.format(metric_prefix)] = metrics['nd_score']
        detail['{}/mAP'.format(metric_prefix)] = metrics['mean_ap']
        return detail

    def format_results(self, results, jsonfile_prefix=None):
        """Format the results to json (standard format for COCO evaluation).

        Args:
wangtai's avatar
wangtai committed
326
            results (list[dict]): Testing results of the dataset.
zhangwenwei's avatar
zhangwenwei committed
327
328
329
330
331
            jsonfile_prefix (str | None): The prefix of json files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
wangtai's avatar
wangtai committed
332
333
334
            tuple (dict, str): result_files is a dict containing the json
                filepaths, tmp_dir is the temporal directory created for
                saving json files when jsonfile_prefix is not specified.
zhangwenwei's avatar
zhangwenwei committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        """
        assert isinstance(results, list), 'results must be a list'
        assert len(results) == len(self), (
            'The length of results is not equal to the dataset len: {} != {}'.
            format(len(results), len(self)))

        if jsonfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            jsonfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None

        if not isinstance(results[0], dict):
            result_files = self._format_bbox(results, jsonfile_prefix)
        else:
            result_files = dict()
            for name in results[0]:
zhangwenwei's avatar
zhangwenwei committed
352
                print(f'\nFormating bboxes of {name}')
zhangwenwei's avatar
zhangwenwei committed
353
354
355
356
357
358
359
360
361
362
363
                results_ = [out[name] for out in results]
                tmp_file_ = osp.join(jsonfile_prefix, name)
                result_files.update(
                    {name: self._format_bbox(results_, tmp_file_)})
        return result_files, tmp_dir

    def evaluate(self,
                 results,
                 metric='bbox',
                 logger=None,
                 jsonfile_prefix=None,
liyinhao's avatar
liyinhao committed
364
365
366
                 result_names=['pts_bbox'],
                 show=False,
                 out_dir=None):
zhangwenwei's avatar
zhangwenwei committed
367
368
369
        """Evaluation in nuScenes protocol.

        Args:
wangtai's avatar
wangtai committed
370
            results (list[dict]): Testing results of the dataset.
zhangwenwei's avatar
zhangwenwei committed
371
372
373
374
375
376
            metric (str | list[str]): Metrics to be evaluated.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            jsonfile_prefix (str | None): The prefix of json files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
liyinhao's avatar
liyinhao committed
377
378
379
380
            show (bool): Whether to visualize.
                Default: False.
            out_dir (str): Path to save the visualization results.
                Default: None.
zhangwenwei's avatar
zhangwenwei committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

        Returns:
            dict[str: float]
        """
        result_files, tmp_dir = self.format_results(results, jsonfile_prefix)

        if isinstance(result_files, dict):
            results_dict = dict()
            for name in result_names:
                print('Evaluating bboxes of {}'.format(name))
                ret_dict = self._evaluate_single(result_files[name])
            results_dict.update(ret_dict)
        elif isinstance(result_files, str):
            results_dict = self._evaluate_single(result_files)

        if tmp_dir is not None:
            tmp_dir.cleanup()
liyinhao's avatar
liyinhao committed
398
399
400

        if show:
            self.show(results, out_dir)
zhangwenwei's avatar
zhangwenwei committed
401
402
        return results_dict

liyinhao's avatar
liyinhao committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    def show(self, results, out_dir):
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['lidar_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
            points = np.fromfile(pts_path, dtype=np.float32).reshape(-1, 4)
            points = points[..., [1, 0, 2]]
            points[..., 0] *= -1
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor
            gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR,
                                          Box3DMode.DEPTH)
            gt_bboxes[..., 2] += gt_bboxes[..., 5] / 2
            pred_bboxes = result['boxes_3d'].tensor.numpy()
            pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR,
                                            Box3DMode.DEPTH)
            pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
            show_result(points, gt_bboxes, pred_bboxes, out_dir, file_name)
        print(results)

zhangwenwei's avatar
zhangwenwei committed
422
423

def output_to_nusc_box(detection):
424
    box3d = detection['boxes_3d']
zhangwenwei's avatar
zhangwenwei committed
425
426
    scores = detection['scores_3d'].numpy()
    labels = detection['labels_3d'].numpy()
427
428
429
430

    box_gravity_center = box3d.gravity_center.numpy()
    box_dims = box3d.dims.numpy()
    box_yaw = box3d.yaw.numpy()
zhangwenwei's avatar
zhangwenwei committed
431
432
    # TODO: check whether this is necessary
    # with dir_offset & dir_limit in the head
433
434
    box_yaw = -box_yaw - np.pi / 2

zhangwenwei's avatar
zhangwenwei committed
435
    box_list = []
436
437
438
    for i in range(len(box3d)):
        quat = pyquaternion.Quaternion(axis=[0, 0, 1], radians=box_yaw[i])
        velocity = (*box3d.tensor[i, 7:9], 0.0)
zhangwenwei's avatar
zhangwenwei committed
439
440
441
442
443
        # velo_val = np.linalg.norm(box3d[i, 7:9])
        # velo_ori = box3d[i, 6]
        # velocity = (
        # velo_val * np.cos(velo_ori), velo_val * np.sin(velo_ori), 0.0)
        box = NuScenesBox(
444
445
            box_gravity_center[i],
            box_dims[i],
zhangwenwei's avatar
zhangwenwei committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
            quat,
            label=labels[i],
            score=scores[i],
            velocity=velocity)
        box_list.append(box)
    return box_list


def lidar_nusc_box_to_global(info,
                             boxes,
                             classes,
                             eval_configs,
                             eval_version='detection_cvpr_2019'):
    box_list = []
    for box in boxes:
        # Move box to ego vehicle coord system
        box.rotate(pyquaternion.Quaternion(info['lidar2ego_rotation']))
        box.translate(np.array(info['lidar2ego_translation']))
        # filter det in ego.
        cls_range_map = eval_configs.class_range
        radius = np.linalg.norm(box.center[:2], 2)
        det_range = cls_range_map[classes[box.label]]
        if radius > det_range:
            continue
        # Move box to global coord system
        box.rotate(pyquaternion.Quaternion(info['ego2global_rotation']))
        box.translate(np.array(info['ego2global_translation']))
        box_list.append(box)
    return box_list