groupfree3d_head.py 41.2 KB
Newer Older
hjin2902's avatar
hjin2902 committed
1
2
3
4
import copy
import numpy as np
import torch
from mmcv import ConfigDict
5
from mmcv.cnn import ConvModule, xavier_init
hjin2902's avatar
hjin2902 committed
6
7
from mmcv.cnn.bricks.transformer import (build_positional_encoding,
                                         build_transformer_layer)
8
from mmcv.runner import BaseModule, force_fp32
hjin2902's avatar
hjin2902 committed
9
10
11
12
13
14
15
16
17
18
19
20
21
from torch import nn as nn
from torch.nn import functional as F

from mmdet3d.core.post_processing import aligned_3d_nms
from mmdet3d.models.builder import build_loss
from mmdet3d.ops import Points_Sampler, gather_points
from mmdet.core import build_bbox_coder, multi_apply
from mmdet.models import HEADS
from .base_conv_bbox_head import BaseConvBboxHead

EPS = 1e-6


22
class PointsObjClsModule(BaseModule):
hjin2902's avatar
hjin2902 committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    """object candidate point prediction from seed point features.

    Args:
        in_channel (int): number of channels of seed point features.
        num_convs (int): number of conv layers.
            Default: 3.
        conv_cfg (dict): Config of convolution.
            Default: dict(type='Conv1d').
        norm_cfg (dict): Config of normalization.
            Default: dict(type='BN1d').
        act_cfg (dict): Config of activation.
            Default: dict(type='ReLU').
    """

    def __init__(self,
                 in_channel,
                 num_convs=3,
                 conv_cfg=dict(type='Conv1d'),
                 norm_cfg=dict(type='BN1d'),
42
43
44
                 act_cfg=dict(type='ReLU'),
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)
hjin2902's avatar
hjin2902 committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        conv_channels = [in_channel for _ in range(num_convs - 1)]
        conv_channels.append(1)

        self.mlp = nn.Sequential()
        prev_channels = in_channel
        for i in range(num_convs):
            self.mlp.add_module(
                f'layer{i}',
                ConvModule(
                    prev_channels,
                    conv_channels[i],
                    1,
                    padding=0,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg if i < num_convs - 1 else None,
                    act_cfg=act_cfg if i < num_convs - 1 else None,
                    bias=True,
                    inplace=True))
            prev_channels = conv_channels[i]

    def forward(self, seed_features):
        """Forward pass.

        Args:
            seed_features (torch.Tensor): seed features, dims:
                (batch_size, feature_dim, num_seed)

        Returns:
            torch.Tensor: objectness logits, dim:
                (batch_size, 1, num_seed)
        """
        return self.mlp(seed_features)


class GeneralSamplingModule(nn.Module):
    """Sampling Points.

    Sampling points with given index.
    """

    def forward(self, xyz, features, sample_inds):
        """Forward pass.

        Args:
            xyz: (B, N, 3) the coordinates of the features.
            features (Tensor): (B, C, N) features to sample.
            sample_inds (Tensor): (B, M) the given index,
                where M is the number of points.

        Returns:
            Tensor: (B, M, 3) coordinates of sampled features
            Tensor: (B, C, M) the sampled features.
            Tensor: (B, M) the given index.
        """
        xyz_t = xyz.transpose(1, 2).contiguous()
        new_xyz = gather_points(xyz_t, sample_inds).transpose(1,
                                                              2).contiguous()
        new_features = gather_points(features, sample_inds).contiguous()

        return new_xyz, new_features, sample_inds


@HEADS.register_module()
108
class GroupFree3DHead(BaseModule):
hjin2902's avatar
hjin2902 committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    r"""Bbox head of `Group-Free 3D <https://arxiv.org/abs/2104.00678>`_.

    Args:
        num_classes (int): The number of class.
        in_channels (int): The dims of input features from backbone.
        bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and
            decoding boxes.
        num_decoder_layers (int): The number of transformer decoder layers.
        transformerlayers (dict): Config for transformer decoder.
        train_cfg (dict): Config for training.
        test_cfg (dict): Config for testing.
        num_proposal (int): The number of initial sampling candidates.
        pred_layer_cfg (dict): Config of classfication and regression
            prediction layers.
        size_cls_agnostic (bool): Whether the predicted size is class-agnostic.
        gt_per_seed (int): the number of candidate instance each point belongs
            to.
        sampling_objectness_loss (dict): Config of initial sampling
            objectness loss.
        objectness_loss (dict): Config of objectness loss.
        center_loss (dict): Config of center loss.
        dir_class_loss (dict): Config of direction classification loss.
        dir_res_loss (dict): Config of direction residual regression loss.
        size_class_loss (dict): Config of size classification loss.
        size_res_loss (dict): Config of size residual regression loss.
        size_reg_loss (dict): Config of class-agnostic size regression loss.
        semantic_loss (dict): Config of point-wise semantic segmentation loss.
    """

    def __init__(self,
                 num_classes,
                 in_channels,
                 bbox_coder,
                 num_decoder_layers,
                 transformerlayers,
                 decoder_self_posembeds=dict(
                     type='ConvBNPositionalEncoding',
                     input_channel=6,
                     num_pos_feats=288),
                 decoder_cross_posembeds=dict(
                     type='ConvBNPositionalEncoding',
                     input_channel=3,
                     num_pos_feats=288),
                 train_cfg=None,
                 test_cfg=None,
                 num_proposal=128,
                 pred_layer_cfg=None,
                 size_cls_agnostic=True,
                 gt_per_seed=3,
                 sampling_objectness_loss=None,
                 objectness_loss=None,
                 center_loss=None,
                 dir_class_loss=None,
                 dir_res_loss=None,
                 size_class_loss=None,
                 size_res_loss=None,
                 size_reg_loss=None,
166
167
168
                 semantic_loss=None,
                 init_cfg=None):
        super(GroupFree3DHead, self).__init__(init_cfg=init_cfg)
hjin2902's avatar
hjin2902 committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        self.num_classes = num_classes
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.num_proposal = num_proposal
        self.in_channels = in_channels
        self.num_decoder_layers = num_decoder_layers
        self.size_cls_agnostic = size_cls_agnostic
        self.gt_per_seed = gt_per_seed

        # Transformer decoder layers
        if isinstance(transformerlayers, ConfigDict):
            transformerlayers = [
                copy.deepcopy(transformerlayers)
                for _ in range(num_decoder_layers)
            ]
        else:
            assert isinstance(transformerlayers, list) and \
                   len(transformerlayers) == num_decoder_layers
        self.decoder_layers = nn.ModuleList()
        for i in range(self.num_decoder_layers):
            self.decoder_layers.append(
                build_transformer_layer(transformerlayers[i]))
        self.embed_dims = self.decoder_layers[0].embed_dims
        assert self.embed_dims == decoder_self_posembeds['num_pos_feats']
        assert self.embed_dims == decoder_cross_posembeds['num_pos_feats']

        # bbox_coder
        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.num_sizes = self.bbox_coder.num_sizes
        self.num_dir_bins = self.bbox_coder.num_dir_bins

        # Initial object candidate sampling
        self.gsample_module = GeneralSamplingModule()
        self.fps_module = Points_Sampler([self.num_proposal])
        self.points_obj_cls = PointsObjClsModule(self.in_channels)

        self.fp16_enabled = False

        # initial candidate prediction
        self.conv_pred = BaseConvBboxHead(
            **pred_layer_cfg,
            num_cls_out_channels=self._get_cls_out_channels(),
            num_reg_out_channels=self._get_reg_out_channels())

        # query proj and key proj
        self.decoder_query_proj = nn.Conv1d(
            self.embed_dims, self.embed_dims, kernel_size=1)
        self.decoder_key_proj = nn.Conv1d(
            self.embed_dims, self.embed_dims, kernel_size=1)

        # query position embed
        self.decoder_self_posembeds = nn.ModuleList()
        for _ in range(self.num_decoder_layers):
            self.decoder_self_posembeds.append(
                build_positional_encoding(decoder_self_posembeds))
        # key position embed
        self.decoder_cross_posembeds = nn.ModuleList()
        for _ in range(self.num_decoder_layers):
            self.decoder_cross_posembeds.append(
                build_positional_encoding(decoder_cross_posembeds))

        # Prediction Head
        self.prediction_heads = nn.ModuleList()
        for i in range(self.num_decoder_layers):
            self.prediction_heads.append(
                BaseConvBboxHead(
                    **pred_layer_cfg,
                    num_cls_out_channels=self._get_cls_out_channels(),
                    num_reg_out_channels=self._get_reg_out_channels()))

        self.sampling_objectness_loss = build_loss(sampling_objectness_loss)
        self.objectness_loss = build_loss(objectness_loss)
        self.center_loss = build_loss(center_loss)
        self.dir_res_loss = build_loss(dir_res_loss)
        self.dir_class_loss = build_loss(dir_class_loss)
        self.semantic_loss = build_loss(semantic_loss)
        if self.size_cls_agnostic:
            self.size_reg_loss = build_loss(size_reg_loss)
        else:
            self.size_res_loss = build_loss(size_res_loss)
            self.size_class_loss = build_loss(size_class_loss)

    def init_weights(self):
        """Initialize weights of transformer decoder in GroupFree3DHead."""
        # initialize transformer
        for m in self.decoder_layers.parameters():
            if m.dim() > 1:
256
                xavier_init(m, distribution='uniform')
hjin2902's avatar
hjin2902 committed
257
258
        for m in self.decoder_self_posembeds.parameters():
            if m.dim() > 1:
259
                xavier_init(m, distribution='uniform')
hjin2902's avatar
hjin2902 committed
260
261
        for m in self.decoder_cross_posembeds.parameters():
            if m.dim() > 1:
262
                xavier_init(m, distribution='uniform')
hjin2902's avatar
hjin2902 committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992

    def _get_cls_out_channels(self):
        """Return the channel number of classification outputs."""
        # Class numbers (k) + objectness (1)
        return self.num_classes + 1

    def _get_reg_out_channels(self):
        """Return the channel number of regression outputs."""
        # center residual (3),
        # heading class+residual (num_dir_bins*2),
        # size class+residual(num_sizes*4 or 3)
        if self.size_cls_agnostic:
            return 6 + self.num_dir_bins * 2
        else:
            return 3 + self.num_dir_bins * 2 + self.num_sizes * 4

    def _extract_input(self, feat_dict):
        """Extract inputs from features dictionary.

        Args:
            feat_dict (dict): Feature dict from backbone.

        Returns:
            torch.Tensor: Coordinates of input points.
            torch.Tensor: Features of input points.
            torch.Tensor: Indices of input points.
        """

        seed_points = feat_dict['fp_xyz'][-1]
        seed_features = feat_dict['fp_features'][-1]
        seed_indices = feat_dict['fp_indices'][-1]

        return seed_points, seed_features, seed_indices

    def forward(self, feat_dict, sample_mod):
        """Forward pass.

        Note:
            The forward of GroupFree3DHead is devided into 2 steps:

                1. Initial object candidates sampling.
                2. Iterative object box prediction by transformer decoder.

        Args:
            feat_dict (dict): Feature dict from backbone.
            sample_mod (str): sample mode for initial candidates sampling.

        Returns:
            results (dict): Predictions of GroupFree3D head.
        """
        assert sample_mod in ['fps', 'kps']

        seed_xyz, seed_features, seed_indices = self._extract_input(feat_dict)

        results = dict(
            seed_points=seed_xyz,
            seed_features=seed_features,
            seed_indices=seed_indices)

        # 1. Initial object candidates sampling.
        if sample_mod == 'fps':
            sample_inds = self.fps_module(seed_xyz, seed_features)
        elif sample_mod == 'kps':
            points_obj_cls_logits = self.points_obj_cls(
                seed_features)  # (batch_size, 1, num_seed)
            points_obj_cls_scores = points_obj_cls_logits.sigmoid().squeeze(1)
            sample_inds = torch.topk(points_obj_cls_scores,
                                     self.num_proposal)[1].int()
            results['seeds_obj_cls_logits'] = points_obj_cls_logits
        else:
            raise NotImplementedError(
                f'Sample mode {sample_mod} is not supported!')

        candidate_xyz, candidate_features, sample_inds = self.gsample_module(
            seed_xyz, seed_features, sample_inds)

        results['query_points_xyz'] = candidate_xyz  # (B, M, 3)
        results['query_points_feature'] = candidate_features  # (B, C, M)
        results['query_points_sample_inds'] = sample_inds.long()  # (B, M)

        prefix = 'proposal.'
        cls_predictions, reg_predictions = self.conv_pred(candidate_features)
        decode_res = self.bbox_coder.split_pred(cls_predictions,
                                                reg_predictions, candidate_xyz,
                                                prefix)

        results.update(decode_res)
        bbox3d = self.bbox_coder.decode(results, prefix)

        # 2. Iterative object box prediction by transformer decoder.
        base_bbox3d = bbox3d[:, :, :6].detach().clone()

        query = self.decoder_query_proj(candidate_features).permute(2, 0, 1)
        key = self.decoder_key_proj(seed_features).permute(2, 0, 1)
        value = key

        # transformer decoder
        results['num_decoder_layers'] = 0
        for i in range(self.num_decoder_layers):
            prefix = f's{i}.'

            query_pos = self.decoder_self_posembeds[i](base_bbox3d).permute(
                2, 0, 1)
            key_pos = self.decoder_cross_posembeds[i](seed_xyz).permute(
                2, 0, 1)

            query = self.decoder_layers[i](
                query, key, value, query_pos=query_pos,
                key_pos=key_pos).permute(1, 2, 0)

            results[f'{prefix}query'] = query

            cls_predictions, reg_predictions = self.prediction_heads[i](query)
            decode_res = self.bbox_coder.split_pred(cls_predictions,
                                                    reg_predictions,
                                                    candidate_xyz, prefix)
            # TODO: should save bbox3d instead of decode_res?
            results.update(decode_res)

            bbox3d = self.bbox_coder.decode(results, prefix)
            results[f'{prefix}bbox3d'] = bbox3d
            base_bbox3d = bbox3d[:, :, :6].detach().clone()
            query = query.permute(2, 0, 1)

            results['num_decoder_layers'] += 1

        return results

    @force_fp32(apply_to=('bbox_preds', ))
    def loss(self,
             bbox_preds,
             points,
             gt_bboxes_3d,
             gt_labels_3d,
             pts_semantic_mask=None,
             pts_instance_mask=None,
             img_metas=None,
             gt_bboxes_ignore=None,
             ret_target=False):
        """Compute loss.

        Args:
            bbox_preds (dict): Predictions from forward of vote head.
            points (list[torch.Tensor]): Input points.
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth \
                bboxes of each sample.
            gt_labels_3d (list[torch.Tensor]): Labels of each sample.
            pts_semantic_mask (None | list[torch.Tensor]): Point-wise
                semantic mask.
            pts_instance_mask (None | list[torch.Tensor]): Point-wise
                instance mask.
            img_metas (list[dict]): Contain pcd and img's meta info.
            gt_bboxes_ignore (None | list[torch.Tensor]): Specify
                which bounding.
            ret_target (Bool): Return targets or not.

        Returns:
            dict: Losses of GroupFree3D.
        """
        targets = self.get_targets(points, gt_bboxes_3d, gt_labels_3d,
                                   pts_semantic_mask, pts_instance_mask,
                                   bbox_preds)
        (sampling_targets, sampling_weights, assigned_size_targets,
         size_class_targets, size_res_targets, dir_class_targets,
         dir_res_targets, center_targets, assigned_center_targets,
         mask_targets, valid_gt_masks, objectness_targets, objectness_weights,
         box_loss_weights, valid_gt_weights) = targets

        batch_size, proposal_num = size_class_targets.shape[:2]

        losses = dict()

        # calculate objectness classification loss
        sampling_obj_score = bbox_preds['seeds_obj_cls_logits'].reshape(-1, 1)
        sampling_objectness_loss = self.sampling_objectness_loss(
            sampling_obj_score,
            1 - sampling_targets.reshape(-1),
            sampling_weights.reshape(-1),
            avg_factor=batch_size)
        losses['sampling_objectness_loss'] = sampling_objectness_loss

        prefixes = ['proposal.'] + [
            f's{i}.' for i in range(bbox_preds['num_decoder_layers'])
        ]
        num_stages = len(prefixes)
        for prefix in prefixes:

            # calculate objectness loss
            obj_score = bbox_preds[f'{prefix}obj_scores'].transpose(2, 1)
            objectness_loss = self.objectness_loss(
                obj_score.reshape(-1, 1),
                1 - objectness_targets.reshape(-1),
                objectness_weights.reshape(-1),
                avg_factor=batch_size)
            losses[f'{prefix}objectness_loss'] = objectness_loss / num_stages

            # calculate center loss
            box_loss_weights_expand = box_loss_weights.unsqueeze(-1).expand(
                -1, -1, 3)
            center_loss = self.center_loss(
                bbox_preds[f'{prefix}center'],
                assigned_center_targets,
                weight=box_loss_weights_expand)
            losses[f'{prefix}center_loss'] = center_loss / num_stages

            # calculate direction class loss
            dir_class_loss = self.dir_class_loss(
                bbox_preds[f'{prefix}dir_class'].transpose(2, 1),
                dir_class_targets,
                weight=box_loss_weights)
            losses[f'{prefix}dir_class_loss'] = dir_class_loss / num_stages

            # calculate direction residual loss
            heading_label_one_hot = size_class_targets.new_zeros(
                (batch_size, proposal_num, self.num_dir_bins))
            heading_label_one_hot.scatter_(2, dir_class_targets.unsqueeze(-1),
                                           1)
            dir_res_norm = torch.sum(
                bbox_preds[f'{prefix}dir_res_norm'] * heading_label_one_hot,
                -1)
            dir_res_loss = self.dir_res_loss(
                dir_res_norm, dir_res_targets, weight=box_loss_weights)
            losses[f'{prefix}dir_res_loss'] = dir_res_loss / num_stages

            if self.size_cls_agnostic:
                # calculate class-agnostic size loss
                size_reg_loss = self.size_reg_loss(
                    bbox_preds[f'{prefix}size'],
                    assigned_size_targets,
                    weight=box_loss_weights_expand)
                losses[f'{prefix}size_reg_loss'] = size_reg_loss / num_stages

            else:
                # calculate size class loss
                size_class_loss = self.size_class_loss(
                    bbox_preds[f'{prefix}size_class'].transpose(2, 1),
                    size_class_targets,
                    weight=box_loss_weights)
                losses[
                    f'{prefix}size_class_loss'] = size_class_loss / num_stages

                # calculate size residual loss
                one_hot_size_targets = size_class_targets.new_zeros(
                    (batch_size, proposal_num, self.num_sizes))
                one_hot_size_targets.scatter_(2,
                                              size_class_targets.unsqueeze(-1),
                                              1)
                one_hot_size_targets_expand = one_hot_size_targets.unsqueeze(
                    -1).expand(-1, -1, -1, 3).contiguous()
                size_residual_norm = torch.sum(
                    bbox_preds[f'{prefix}size_res_norm'] *
                    one_hot_size_targets_expand, 2)
                box_loss_weights_expand = box_loss_weights.unsqueeze(
                    -1).expand(-1, -1, 3)
                size_res_loss = self.size_res_loss(
                    size_residual_norm,
                    size_res_targets,
                    weight=box_loss_weights_expand)
                losses[f'{prefix}size_res_loss'] = size_res_loss / num_stages

            # calculate semantic loss
            semantic_loss = self.semantic_loss(
                bbox_preds[f'{prefix}sem_scores'].transpose(2, 1),
                mask_targets,
                weight=box_loss_weights)
            losses[f'{prefix}semantic_loss'] = semantic_loss / num_stages

        if ret_target:
            losses['targets'] = targets

        return losses

    def get_targets(self,
                    points,
                    gt_bboxes_3d,
                    gt_labels_3d,
                    pts_semantic_mask=None,
                    pts_instance_mask=None,
                    bbox_preds=None,
                    max_gt_num=64):
        """Generate targets of GroupFree3D head.

        Args:
            points (list[torch.Tensor]): Points of each batch.
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth \
                bboxes of each batch.
            gt_labels_3d (list[torch.Tensor]): Labels of each batch.
            pts_semantic_mask (None | list[torch.Tensor]): Point-wise semantic
                label of each batch.
            pts_instance_mask (None | list[torch.Tensor]): Point-wise instance
                label of each batch.
            bbox_preds (torch.Tensor): Bounding box predictions of vote head.
            max_gt_num (int): Max number of GTs for single batch.

        Returns:
            tuple[torch.Tensor]: Targets of GroupFree3D head.
        """
        # find empty example
        valid_gt_masks = list()
        gt_num = list()
        for index in range(len(gt_labels_3d)):
            if len(gt_labels_3d[index]) == 0:
                fake_box = gt_bboxes_3d[index].tensor.new_zeros(
                    1, gt_bboxes_3d[index].tensor.shape[-1])
                gt_bboxes_3d[index] = gt_bboxes_3d[index].new_box(fake_box)
                gt_labels_3d[index] = gt_labels_3d[index].new_zeros(1)
                valid_gt_masks.append(gt_labels_3d[index].new_zeros(1))
                gt_num.append(1)
            else:
                valid_gt_masks.append(gt_labels_3d[index].new_ones(
                    gt_labels_3d[index].shape))
                gt_num.append(gt_labels_3d[index].shape[0])
        # max_gt_num = max(gt_num)

        max_gt_nums = [max_gt_num for _ in range(len(gt_labels_3d))]

        if pts_semantic_mask is None:
            pts_semantic_mask = [None for i in range(len(gt_labels_3d))]
            pts_instance_mask = [None for i in range(len(gt_labels_3d))]

        seed_points = [
            bbox_preds['seed_points'][i] for i in range(len(gt_labels_3d))
        ]

        seed_indices = [
            bbox_preds['seed_indices'][i] for i in range(len(gt_labels_3d))
        ]

        candidate_indices = [
            bbox_preds['query_points_sample_inds'][i]
            for i in range(len(gt_labels_3d))
        ]

        (sampling_targets, assigned_size_targets, size_class_targets,
         size_res_targets, dir_class_targets, dir_res_targets, center_targets,
         assigned_center_targets, mask_targets, objectness_targets,
         objectness_masks) = multi_apply(self.get_targets_single, points,
                                         gt_bboxes_3d, gt_labels_3d,
                                         pts_semantic_mask, pts_instance_mask,
                                         max_gt_nums, seed_points,
                                         seed_indices, candidate_indices)

        # pad targets as original code of GroupFree3D.
        for index in range(len(gt_labels_3d)):
            pad_num = max_gt_num - gt_labels_3d[index].shape[0]
            valid_gt_masks[index] = F.pad(valid_gt_masks[index], (0, pad_num))

        sampling_targets = torch.stack(sampling_targets)
        sampling_weights = (sampling_targets >= 0).float()
        sampling_normalizer = sampling_weights.sum(dim=1, keepdim=True).float()
        sampling_weights /= sampling_normalizer.clamp(min=1.0)

        assigned_size_targets = torch.stack(assigned_size_targets)
        center_targets = torch.stack(center_targets)
        valid_gt_masks = torch.stack(valid_gt_masks)

        assigned_center_targets = torch.stack(assigned_center_targets)
        objectness_targets = torch.stack(objectness_targets)

        objectness_weights = torch.stack(objectness_masks)
        cls_normalizer = objectness_weights.sum(dim=1, keepdim=True).float()
        objectness_weights /= cls_normalizer.clamp(min=1.0)

        box_loss_weights = objectness_targets.float() / (
            objectness_targets.sum().float() + EPS)

        valid_gt_weights = valid_gt_masks.float() / (
            valid_gt_masks.sum().float() + EPS)

        dir_class_targets = torch.stack(dir_class_targets)
        dir_res_targets = torch.stack(dir_res_targets)
        size_class_targets = torch.stack(size_class_targets)
        size_res_targets = torch.stack(size_res_targets)
        mask_targets = torch.stack(mask_targets)

        return (sampling_targets, sampling_weights, assigned_size_targets,
                size_class_targets, size_res_targets, dir_class_targets,
                dir_res_targets, center_targets, assigned_center_targets,
                mask_targets, valid_gt_masks, objectness_targets,
                objectness_weights, box_loss_weights, valid_gt_weights)

    def get_targets_single(self,
                           points,
                           gt_bboxes_3d,
                           gt_labels_3d,
                           pts_semantic_mask=None,
                           pts_instance_mask=None,
                           max_gt_nums=None,
                           seed_points=None,
                           seed_indices=None,
                           candidate_indices=None,
                           seed_points_obj_topk=4):
        """Generate targets of GroupFree3D head for single batch.

        Args:
            points (torch.Tensor): Points of each batch.
            gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth \
                boxes of each batch.
            gt_labels_3d (torch.Tensor): Labels of each batch.
            pts_semantic_mask (None | torch.Tensor): Point-wise semantic
                label of each batch.
            pts_instance_mask (None | torch.Tensor): Point-wise instance
                label of each batch.
            max_gt_nums (int): Max number of GTs for single batch.
            seed_points (torch.Tensor): Coordinates of seed points.
            seed_indices (torch.Tensor): Indices of seed points.
            candidate_indices (torch.Tensor): Indices of object candidates.
            seed_points_obj_topk (int): k value of k-Closest Points Sampling.

        Returns:
            tuple[torch.Tensor]: Targets of GroupFree3D head.
        """

        assert self.bbox_coder.with_rot or pts_semantic_mask is not None

        gt_bboxes_3d = gt_bboxes_3d.to(points.device)

        # generate center, dir, size target
        (center_targets, size_targets, size_class_targets, size_res_targets,
         dir_class_targets,
         dir_res_targets) = self.bbox_coder.encode(gt_bboxes_3d, gt_labels_3d)

        # pad targets as original code of GroupFree3D
        pad_num = max_gt_nums - gt_labels_3d.shape[0]
        box_label_mask = points.new_zeros([max_gt_nums])
        box_label_mask[:gt_labels_3d.shape[0]] = 1

        gt_bboxes_pad = F.pad(gt_bboxes_3d.tensor, (0, 0, 0, pad_num))
        gt_bboxes_pad[gt_labels_3d.shape[0]:, 0:3] += 1000
        gt_bboxes_3d = gt_bboxes_3d.new_box(gt_bboxes_pad)

        gt_labels_3d = F.pad(gt_labels_3d, (0, pad_num))

        center_targets = F.pad(center_targets, (0, 0, 0, pad_num), value=1000)
        size_targets = F.pad(size_targets, (0, 0, 0, pad_num))
        size_class_targets = F.pad(size_class_targets, (0, pad_num))
        size_res_targets = F.pad(size_res_targets, (0, 0, 0, pad_num))
        dir_class_targets = F.pad(dir_class_targets, (0, pad_num))
        dir_res_targets = F.pad(dir_res_targets, (0, pad_num))

        # 0. generate pts_instance_label and pts_obj_mask
        num_points = points.shape[0]
        pts_obj_mask = points.new_zeros([num_points], dtype=torch.long)
        pts_instance_label = points.new_zeros([num_points],
                                              dtype=torch.long) - 1

        if self.bbox_coder.with_rot:
            vote_targets = points.new_zeros([num_points, 4 * self.gt_per_seed])
            vote_target_idx = points.new_zeros([num_points], dtype=torch.long)
            box_indices_all = gt_bboxes_3d.points_in_boxes(points)
            for i in range(gt_labels_3d.shape[0]):
                box_indices = box_indices_all[:, i]
                indices = torch.nonzero(
                    box_indices, as_tuple=False).squeeze(-1)
                selected_points = points[indices]
                pts_obj_mask[indices] = 1
                vote_targets_tmp = vote_targets[indices]
                votes = gt_bboxes_3d.gravity_center[i].unsqueeze(
                    0) - selected_points[:, :3]

                for j in range(self.gt_per_seed):
                    column_indices = torch.nonzero(
                        vote_target_idx[indices] == j,
                        as_tuple=False).squeeze(-1)
                    vote_targets_tmp[column_indices,
                                     int(j * 3):int(j * 3 +
                                                    3)] = votes[column_indices]
                    vote_targets_tmp[column_indices,
                                     j + 3 * self.gt_per_seed] = i
                    if j == 0:
                        vote_targets_tmp[
                            column_indices, :3 *
                            self.gt_per_seed] = votes[column_indices].repeat(
                                1, self.gt_per_seed)
                        vote_targets_tmp[column_indices,
                                         3 * self.gt_per_seed:] = i

                vote_targets[indices] = vote_targets_tmp
                vote_target_idx[indices] = torch.clamp(
                    vote_target_idx[indices] + 1, max=2)

            dist = points.new_zeros([num_points, self.gt_per_seed]) + 1000
            for j in range(self.gt_per_seed):
                dist[:, j] = (vote_targets[:, 3 * j:3 * j + 3]**2).sum(-1)

            instance_indices = torch.argmin(
                dist, dim=-1).unsqueeze(-1) + 3 * self.gt_per_seed
            instance_lable = torch.gather(vote_targets, 1,
                                          instance_indices).squeeze(-1)
            pts_instance_label = instance_lable.long()
            pts_instance_label[pts_obj_mask == 0] = -1

        elif pts_semantic_mask is not None:
            for i in torch.unique(pts_instance_mask):
                indices = torch.nonzero(
                    pts_instance_mask == i, as_tuple=False).squeeze(-1)

                if pts_semantic_mask[indices[0]] < self.num_classes:
                    selected_points = points[indices, :3]
                    center = 0.5 * (
                        selected_points.min(0)[0] + selected_points.max(0)[0])

                    delta_xyz = center - center_targets
                    instance_lable = torch.argmin((delta_xyz**2).sum(-1))
                    pts_instance_label[indices] = instance_lable
                    pts_obj_mask[indices] = 1

        else:
            raise NotImplementedError

        # 1. generate objectness targets in sampling head
        gt_num = gt_labels_3d.shape[0]
        num_seed = seed_points.shape[0]
        num_candidate = candidate_indices.shape[0]

        object_assignment = torch.gather(pts_instance_label, 0, seed_indices)
        # set background points to the last gt bbox as original code
        object_assignment[object_assignment < 0] = gt_num - 1
        object_assignment_one_hot = gt_bboxes_3d.tensor.new_zeros(
            (num_seed, gt_num))
        object_assignment_one_hot.scatter_(1, object_assignment.unsqueeze(-1),
                                           1)  # (num_seed, gt_num)

        delta_xyz = seed_points.unsqueeze(
            1) - gt_bboxes_3d.gravity_center.unsqueeze(
                0)  # (num_seed, gt_num, 3)
        delta_xyz = delta_xyz / (gt_bboxes_3d.dims.unsqueeze(0) + EPS)

        new_dist = torch.sum(delta_xyz**2, dim=-1)
        euclidean_dist1 = torch.sqrt(new_dist + EPS)
        euclidean_dist1 = euclidean_dist1 * object_assignment_one_hot + 100 * (
            1 - object_assignment_one_hot)
        # (gt_num, num_seed)
        euclidean_dist1 = euclidean_dist1.permute(1, 0)

        # gt_num x topk
        topk_inds = torch.topk(
            euclidean_dist1,
            seed_points_obj_topk,
            largest=False)[1] * box_label_mask[:, None] + \
            (box_label_mask[:, None] - 1)
        topk_inds = topk_inds.long()
        topk_inds = topk_inds.view(-1).contiguous()

        sampling_targets = torch.zeros(
            num_seed + 1, dtype=torch.long).to(points.device)
        sampling_targets[topk_inds] = 1
        sampling_targets = sampling_targets[:num_seed]
        # pts_instance_label
        objectness_label_mask = torch.gather(pts_instance_label, 0,
                                             seed_indices)  # num_seed
        sampling_targets[objectness_label_mask < 0] = 0

        # 2. objectness target
        seed_obj_gt = torch.gather(pts_obj_mask, 0, seed_indices)  # num_seed
        objectness_targets = torch.gather(seed_obj_gt, 0,
                                          candidate_indices)  # num_candidate

        # 3. box target
        seed_instance_label = torch.gather(pts_instance_label, 0,
                                           seed_indices)  # num_seed
        query_points_instance_label = torch.gather(
            seed_instance_label, 0, candidate_indices)  # num_candidate

        # Set assignment
        # (num_candidate, ) with values in 0,1,...,gt_num-1
        assignment = query_points_instance_label
        # set background points to the last gt bbox as original code
        assignment[assignment < 0] = gt_num - 1
        assignment_expand = assignment.unsqueeze(1).expand(-1, 3)

        assigned_center_targets = center_targets[assignment]
        assigned_size_targets = size_targets[assignment]

        dir_class_targets = dir_class_targets[assignment]
        dir_res_targets = dir_res_targets[assignment]
        dir_res_targets /= (np.pi / self.num_dir_bins)

        size_class_targets = size_class_targets[assignment]
        size_res_targets = \
            torch.gather(size_res_targets, 0, assignment_expand)
        one_hot_size_targets = gt_bboxes_3d.tensor.new_zeros(
            (num_candidate, self.num_sizes))
        one_hot_size_targets.scatter_(1, size_class_targets.unsqueeze(-1), 1)
        one_hot_size_targets = one_hot_size_targets.unsqueeze(-1).expand(
            -1, -1, 3)  # (num_candidate,num_size_cluster,3)
        mean_sizes = size_res_targets.new_tensor(
            self.bbox_coder.mean_sizes).unsqueeze(0)
        pos_mean_sizes = torch.sum(one_hot_size_targets * mean_sizes, 1)
        size_res_targets /= pos_mean_sizes

        mask_targets = gt_labels_3d[assignment].long()

        objectness_masks = points.new_ones((num_candidate))

        return (sampling_targets, assigned_size_targets, size_class_targets,
                size_res_targets, dir_class_targets, dir_res_targets,
                center_targets, assigned_center_targets, mask_targets,
                objectness_targets, objectness_masks)

    def get_bboxes(self,
                   points,
                   bbox_preds,
                   input_metas,
                   rescale=False,
                   use_nms=True):
        """Generate bboxes from GroupFree3D head predictions.

        Args:
            points (torch.Tensor): Input points.
            bbox_preds (dict): Predictions from GroupFree3D head.
            input_metas (list[dict]): Point cloud and image's meta info.
            rescale (bool): Whether to rescale bboxes.
            use_nms (bool): Whether to apply NMS, skip nms postprocessing
                while using GroupFree3D head in rpn stage.

        Returns:
            list[tuple[torch.Tensor]]: Bounding boxes, scores and labels.
        """
        # support multi-stage predicitons
        assert self.test_cfg['prediction_stages'] in \
            ['last', 'all', 'last_three']

        prefixes = list()
        if self.test_cfg['prediction_stages'] == 'last':
            prefixes = [f'_{self.num_decoder_layers - 1}']
        elif self.test_cfg['prediction_stages'] == 'all':
            prefixes = ['proposal.'] + \
                [f's{i}.' for i in range(self.num_decoder_layers)]
        elif self.test_cfg['prediction_stages'] == 'last_three':
            prefixes = [
                f's{i}.' for i in range(self.num_decoder_layers -
                                        3, self.num_decoder_layers)
            ]
        else:
            raise NotImplementedError

        obj_scores = list()
        sem_scores = list()
        bbox3d = list()
        for prefix in prefixes:
            # decode boxes
            obj_score = bbox_preds[f'{prefix}obj_scores'][..., -1].sigmoid()
            sem_score = bbox_preds[f'{prefix}sem_scores'].softmax(-1)
            bbox = self.bbox_coder.decode(bbox_preds, prefix)
            obj_scores.append(obj_score)
            sem_scores.append(sem_score)
            bbox3d.append(bbox)

        obj_scores = torch.cat(obj_scores, dim=1)
        sem_scores = torch.cat(sem_scores, dim=1)
        bbox3d = torch.cat(bbox3d, dim=1)

        if use_nms:
            batch_size = bbox3d.shape[0]
            results = list()
            for b in range(batch_size):
                bbox_selected, score_selected, labels = \
                    self.multiclass_nms_single(obj_scores[b], sem_scores[b],
                                               bbox3d[b], points[b, ..., :3],
                                               input_metas[b])
                bbox = input_metas[b]['box_type_3d'](
                    bbox_selected,
                    box_dim=bbox_selected.shape[-1],
                    with_yaw=self.bbox_coder.with_rot)
                results.append((bbox, score_selected, labels))

            return results
        else:
            return bbox3d

    def multiclass_nms_single(self, obj_scores, sem_scores, bbox, points,
                              input_meta):
        """Multi-class nms in single batch.

        Args:
            obj_scores (torch.Tensor): Objectness score of bounding boxes.
            sem_scores (torch.Tensor): semantic class score of bounding boxes.
            bbox (torch.Tensor): Predicted bounding boxes.
            points (torch.Tensor): Input points.
            input_meta (dict): Point cloud and image's meta info.

        Returns:
            tuple[torch.Tensor]: Bounding boxes, scores and labels.
        """
        bbox = input_meta['box_type_3d'](
            bbox,
            box_dim=bbox.shape[-1],
            with_yaw=self.bbox_coder.with_rot,
            origin=(0.5, 0.5, 0.5))
        box_indices = bbox.points_in_boxes(points)

        corner3d = bbox.corners
        minmax_box3d = corner3d.new(torch.Size((corner3d.shape[0], 6)))
        minmax_box3d[:, :3] = torch.min(corner3d, dim=1)[0]
        minmax_box3d[:, 3:] = torch.max(corner3d, dim=1)[0]

        nonempty_box_mask = box_indices.T.sum(1) > 5

        bbox_classes = torch.argmax(sem_scores, -1)
        nms_selected = aligned_3d_nms(minmax_box3d[nonempty_box_mask],
                                      obj_scores[nonempty_box_mask],
                                      bbox_classes[nonempty_box_mask],
                                      self.test_cfg.nms_thr)

        # filter empty boxes and boxes with low score
        scores_mask = (obj_scores > self.test_cfg.score_thr)
        nonempty_box_inds = torch.nonzero(
            nonempty_box_mask, as_tuple=False).flatten()
        nonempty_mask = torch.zeros_like(bbox_classes).scatter(
            0, nonempty_box_inds[nms_selected], 1)
        selected = (nonempty_mask.bool() & scores_mask.bool())

        if self.test_cfg.per_class_proposal:
            bbox_selected, score_selected, labels = [], [], []
            for k in range(sem_scores.shape[-1]):
                bbox_selected.append(bbox[selected].tensor)
                score_selected.append(obj_scores[selected] *
                                      sem_scores[selected][:, k])
                labels.append(
                    torch.zeros_like(bbox_classes[selected]).fill_(k))
            bbox_selected = torch.cat(bbox_selected, 0)
            score_selected = torch.cat(score_selected, 0)
            labels = torch.cat(labels, 0)
        else:
            bbox_selected = bbox[selected].tensor
            score_selected = obj_scores[selected]
            labels = bbox_classes[selected]

        return bbox_selected, score_selected, labels