test_roi_extractors.py 1.24 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import pytest
import torch

from mmdet3d.models.roi_heads.roi_extractors import Single3DRoIAwareExtractor


def test_single_roiaware_extractor():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    roi_layer_cfg = dict(
        type='RoIAwarePool3d', out_size=4, max_pts_per_voxel=128, mode='max')

    self = Single3DRoIAwareExtractor(roi_layer=roi_layer_cfg)
    feats = torch.tensor(
        [[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
         [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
         [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9],
         [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]],
        dtype=torch.float32).cuda()
    coordinate = feats.clone()
    batch_inds = torch.zeros(feats.shape[0]).cuda()
    rois = torch.tensor([[0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3],
                         [0, -10.0, 23.0, 16.0, 10, 20, 20, 0.5]],
                        dtype=torch.float32).cuda()
    # test forward
    pooled_feats = self(feats, coordinate, batch_inds, rois)
    assert pooled_feats.shape == torch.Size([2, 4, 4, 4, 3])
    assert torch.allclose(pooled_feats.sum(),
                          torch.tensor(51.100).cuda(), 1e-3)