import pytest import torch from mmdet3d.models.roi_heads.roi_extractors import Single3DRoIAwareExtractor def test_single_roiaware_extractor(): if not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') roi_layer_cfg = dict( type='RoIAwarePool3d', out_size=4, max_pts_per_voxel=128, mode='max') self = Single3DRoIAwareExtractor(roi_layer=roi_layer_cfg) feats = torch.tensor( [[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6], [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3], [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]], dtype=torch.float32).cuda() coordinate = feats.clone() batch_inds = torch.zeros(feats.shape[0]).cuda() rois = torch.tensor([[0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3], [0, -10.0, 23.0, 16.0, 10, 20, 20, 0.5]], dtype=torch.float32).cuda() # test forward pooled_feats = self(feats, coordinate, batch_inds, rois) assert pooled_feats.shape == torch.Size([2, 4, 4, 4, 3]) assert torch.allclose(pooled_feats.sum(), torch.tensor(51.100).cuda(), 1e-3)