test_semantickitti_dataset.py 4.9 KB
Newer Older
ZCMax's avatar
ZCMax committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Copyright (c) OpenMMLab. All rights reserved.
import unittest

import numpy as np

from mmdet3d.datasets import SemanticKITTIDataset
from mmdet3d.utils import register_all_modules


def _generate_semantickitti_dataset_config():
    data_root = './tests/data/semantickitti/'
    ann_file = 'semantickitti_infos.pkl'
    classes = ('unlabeled', 'car', 'bicycle', 'motorcycle', 'truck', 'bus',
               'person', 'bicyclist', 'motorcyclist', 'road', 'parking',
               'sidewalk', 'other-ground', 'building', 'fence', 'vegetation',
               'trunck', 'terrian', 'pole', 'traffic-sign')
    palette = [
        [174, 199, 232],
        [152, 223, 138],
        [31, 119, 180],
        [255, 187, 120],
        [188, 189, 34],
        [140, 86, 75],
        [255, 152, 150],
        [214, 39, 40],
        [197, 176, 213],
        [148, 103, 189],
        [196, 156, 148],
        [23, 190, 207],
        [247, 182, 210],
        [219, 219, 141],
        [255, 127, 14],
        [158, 218, 229],
        [44, 160, 44],
        [112, 128, 144],
        [227, 119, 194],
        [82, 84, 163],
    ]
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

    seg_label_mapping = {
        0: 0,  # "unlabeled"
        1: 0,  # "outlier" mapped to "unlabeled" --------------mapped
        10: 1,  # "car"
        11: 2,  # "bicycle"
        13: 5,  # "bus" mapped to "other-vehicle" --------------mapped
        15: 3,  # "motorcycle"
        16: 5,  # "on-rails" mapped to "other-vehicle" ---------mapped
        18: 4,  # "truck"
        20: 5,  # "other-vehicle"
        30: 6,  # "person"
        31: 7,  # "bicyclist"
        32: 8,  # "motorcyclist"
        40: 9,  # "road"
        44: 10,  # "parking"
        48: 11,  # "sidewalk"
        49: 12,  # "other-ground"
        50: 13,  # "building"
        51: 14,  # "fence"
        52: 0,  # "other-structure" mapped to "unlabeled" ------mapped
        60: 9,  # "lane-marking" to "road" ---------------------mapped
        70: 15,  # "vegetation"
        71: 16,  # "trunk"
        72: 17,  # "terrain"
        80: 18,  # "pole"
        81: 19,  # "traffic-sign"
        99: 0,  # "other-object" to "unlabeled" ----------------mapped
        252: 1,  # "moving-car" to "car" ------------------------mapped
        253: 7,  # "moving-bicyclist" to "bicyclist" ------------mapped
        254: 6,  # "moving-person" to "person" ------------------mapped
        255: 8,  # "moving-motorcyclist" to "motorcyclist" ------mapped
        256: 5,  # "moving-on-rails" mapped to "other-vehic------mapped
        257: 5,  # "moving-bus" mapped to "other-vehicle" -------mapped
        258: 4,  # "moving-truck" to "truck" --------------------mapped
        259: 5  # "moving-other"-vehicle to "other-vehicle"-----mapped
    }
    max_label = 259
ZCMax's avatar
ZCMax committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    modality = dict(use_lidar=True, use_camera=False)
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            shift_height=True,
            load_dim=4,
            use_dim=[0, 1, 2]),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=False,
            with_label_3d=False,
            with_mask_3d=False,
            with_seg_3d=True,
            seg_3d_dtype=np.int32),
92
        dict(type='PointSegClassMapping'),
ZCMax's avatar
ZCMax committed
93
94
95
96
97
98
99
        dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask'])
    ]

    data_prefix = dict(
        pts='sequences/00/velodyne', pts_semantic_mask='sequences/00/labels')

    return (data_root, ann_file, classes, palette, data_prefix, pipeline,
100
            modality, seg_label_mapping, max_label)
ZCMax's avatar
ZCMax committed
101
102
103
104
105


class TestSemanticKITTIDataset(unittest.TestCase):

    def test_semantickitti(self):
106
107
108
        (data_root, ann_file, classes, palette, data_prefix, pipeline,
         modality, seg_label_mapping,
         max_label) = _generate_semantickitti_dataset_config()
ZCMax's avatar
ZCMax committed
109
110

        register_all_modules()
111
        np.random.seed(0)
ZCMax's avatar
ZCMax committed
112
113
114
        semantickitti_dataset = SemanticKITTIDataset(
            data_root,
            ann_file,
115
116
117
118
119
            metainfo=dict(
                classes=classes,
                palette=palette,
                seg_label_mapping=seg_label_mapping,
                max_label=max_label),
ZCMax's avatar
ZCMax committed
120
121
122
123
124
125
126
            data_prefix=data_prefix,
            pipeline=pipeline,
            modality=modality)

        input_dict = semantickitti_dataset.prepare_data(0)

        points = input_dict['inputs']['points']
127
        data_sample = input_dict['data_samples']
ZCMax's avatar
ZCMax committed
128
129
        pts_semantic_mask = data_sample.gt_pts_seg.pts_semantic_mask
        self.assertEqual(points.shape[0], pts_semantic_mask.shape[0])
130
131
132
133
134
135
136
137
138
139

        expected_pts_semantic_mask = np.array([
            13., 13., 13., 15., 15., 13., 0., 13., 15., 13., 13., 15., 16., 0.,
            15., 13., 13., 13., 13., 0., 13., 13., 13., 13., 13., 15., 13.,
            16., 13., 15., 15., 18., 13., 15., 15., 15., 16., 15., 13., 13.,
            15., 13., 18., 15., 13., 15., 13., 15., 15., 13.
        ])

        self.assertTrue(
            (pts_semantic_mask.numpy() == expected_pts_semantic_mask).all())