kitti_dataset.py 21.9 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
import copy
import os
3
4
import os.path as osp
import tempfile
zhangwenwei's avatar
zhangwenwei committed
5
6
7
8

import mmcv
import numpy as np
import torch
zhangwenwei's avatar
zhangwenwei committed
9
from mmcv.utils import print_log
zhangwenwei's avatar
zhangwenwei committed
10

zhangwenwei's avatar
zhangwenwei committed
11
from mmdet.datasets import DATASETS
liyinhao's avatar
liyinhao committed
12
from ..core import show_result
zhangwenwei's avatar
zhangwenwei committed
13
from ..core.bbox import Box3DMode, CameraInstance3DBoxes, points_cam2img
zhangwenwei's avatar
zhangwenwei committed
14
from .custom_3d import Custom3DDataset
zhangwenwei's avatar
zhangwenwei committed
15
16


17
@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
18
class KittiDataset(Custom3DDataset):
zhangwenwei's avatar
zhangwenwei committed
19
20
21
22

    CLASSES = ('car', 'pedestrian', 'cyclist')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
23
                 data_root,
zhangwenwei's avatar
zhangwenwei committed
24
25
                 ann_file,
                 split,
zhangwenwei's avatar
zhangwenwei committed
26
                 pts_prefix='velodyne',
zhangwenwei's avatar
zhangwenwei committed
27
                 pipeline=None,
zhangwenwei's avatar
zhangwenwei committed
28
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
29
                 modality=None,
30
31
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
zhangwenwei's avatar
zhangwenwei committed
32
                 test_mode=False):
zhangwenwei's avatar
zhangwenwei committed
33
34
35
36
37
38
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
39
40
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
zhangwenwei's avatar
zhangwenwei committed
41
42
43
            test_mode=test_mode)

        self.root_split = os.path.join(self.data_root, split)
zhangwenwei's avatar
zhangwenwei committed
44
45
        assert self.modality is not None
        self.pcd_limit_range = [0, -40, -3, 70.4, 40, 0.0]
zhangwenwei's avatar
zhangwenwei committed
46
        self.pts_prefix = pts_prefix
zhangwenwei's avatar
zhangwenwei committed
47

zhangwenwei's avatar
zhangwenwei committed
48
49
50
51
    def _get_pts_filename(self, idx):
        pts_filename = osp.join(self.root_split, self.pts_prefix,
                                f'{idx:06d}.bin')
        return pts_filename
zhangwenwei's avatar
zhangwenwei committed
52

zhangwenwei's avatar
zhangwenwei committed
53
54
    def get_data_info(self, index):
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
55
        sample_idx = info['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
56
        img_filename = os.path.join(self.data_root,
zhangwenwei's avatar
zhangwenwei committed
57
58
                                    info['image']['image_path'])

zhangwenwei's avatar
zhangwenwei committed
59
60
61
62
63
64
        # TODO: consider use torch.Tensor only
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        lidar2img = P2 @ rect @ Trv2c

zhangwenwei's avatar
zhangwenwei committed
65
        pts_filename = self._get_pts_filename(sample_idx)
zhangwenwei's avatar
zhangwenwei committed
66
67
        input_dict = dict(
            sample_idx=sample_idx,
zhangwenwei's avatar
zhangwenwei committed
68
            pts_filename=pts_filename,
zhangwenwei's avatar
zhangwenwei committed
69
70
            img_prefix=None,
            img_info=dict(filename=img_filename),
zhangwenwei's avatar
zhangwenwei committed
71
72
73
            lidar2img=lidar2img)

        if not self.test_mode:
zhangwenwei's avatar
zhangwenwei committed
74
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
75
            input_dict['ann_info'] = annos
zhangwenwei's avatar
zhangwenwei committed
76
77
78
79
80

        return input_dict

    def get_ann_info(self, index):
        # Use index to get the annos, thus the evalhook could also use this api
zhangwenwei's avatar
zhangwenwei committed
81
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
82
83
84
85
86
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)

        annos = info['annos']
        # we need other objects to avoid collision when sample
87
        annos = self.remove_dontcare(annos)
zhangwenwei's avatar
zhangwenwei committed
88
89
90
91
92
93
94
        loc = annos['location']
        dims = annos['dimensions']
        rots = annos['rotation_y']
        gt_names = annos['name']
        # print(gt_names, len(loc))
        gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                      axis=1).astype(np.float32)
95
96
97

        # convert gt_bboxes_3d to velodyne coordinates
        gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
98
            self.box_mode_3d, np.linalg.inv(rect @ Trv2c))
zhangwenwei's avatar
zhangwenwei committed
99
100
101
        gt_bboxes = annos['bbox']

        selected = self.drop_arrays_by_name(gt_names, ['DontCare'])
102
        # gt_bboxes_3d = gt_bboxes_3d[selected].astype('float32')
zhangwenwei's avatar
zhangwenwei committed
103
104
105
106
107
108
109
110
111
112
113
        gt_bboxes = gt_bboxes[selected].astype('float32')
        gt_names = gt_names[selected]

        gt_labels = []
        for cat in gt_names:
            if cat in self.CLASSES:
                gt_labels.append(self.CLASSES.index(cat))
            else:
                gt_labels.append(-1)
        gt_labels = np.array(gt_labels)
        gt_labels_3d = copy.deepcopy(gt_labels)
zhangwenwei's avatar
zhangwenwei committed
114
115
116

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
117
            gt_labels_3d=gt_labels_3d,
zhangwenwei's avatar
zhangwenwei committed
118
119
            bboxes=gt_bboxes,
            labels=gt_labels)
zhangwenwei's avatar
zhangwenwei committed
120
121
122
123
124
125
126
127
128
129
130
131
        return anns_results

    def drop_arrays_by_name(self, gt_names, used_classes):
        inds = [i for i, x in enumerate(gt_names) if x not in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

    def keep_arrays_by_name(self, gt_names, used_classes):
        inds = [i for i, x in enumerate(gt_names) if x in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

132
133
134
135
136
137
138
139
140
141
    def remove_dontcare(self, ann_info):
        img_filtered_annotations = {}
        relevant_annotation_indices = [
            i for i, x in enumerate(ann_info['name']) if x != 'DontCare'
        ]
        for key in ann_info.keys():
            img_filtered_annotations[key] = (
                ann_info[key][relevant_annotation_indices])
        return img_filtered_annotations

142
143
144
145
146
147
148
149
150
151
    def format_results(self,
                       outputs,
                       pklfile_prefix=None,
                       submission_prefix=None):
        if pklfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None

zhangwenwei's avatar
zhangwenwei committed
152
        if not isinstance(outputs[0], dict):
zhangwenwei's avatar
zhangwenwei committed
153
            result_files = self.bbox2result_kitti2d(outputs, self.CLASSES,
zhangwenwei's avatar
zhangwenwei committed
154
                                                    pklfile_prefix,
155
                                                    submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        elif 'pts_bbox' in outputs[0] or 'img_bbox' in outputs[0]:
            result_files = dict()
            for name in outputs[0]:
                results_ = [out[name] for out in outputs]
                pklfile_prefix_ = pklfile_prefix + name
                if submission_prefix is not None:
                    submission_prefix_ = submission_prefix + name
                else:
                    submission_prefix_ = None
                if 'img' in name:
                    result_files = self.bbox2result_kitti2d(
                        results_, self.CLASSES, pklfile_prefix_,
                        submission_prefix_)
                else:
                    result_files_ = self.bbox2result_kitti(
                        results_, self.CLASSES, pklfile_prefix_,
                        submission_prefix_)
                result_files[name] = result_files_
zhangwenwei's avatar
zhangwenwei committed
174
        else:
zhangwenwei's avatar
zhangwenwei committed
175
            result_files = self.bbox2result_kitti(outputs, self.CLASSES,
176
177
                                                  pklfile_prefix,
                                                  submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
178
        return result_files, tmp_dir
zhangwenwei's avatar
zhangwenwei committed
179

180
181
182
183
184
    def evaluate(self,
                 results,
                 metric=None,
                 logger=None,
                 pklfile_prefix=None,
liyinhao's avatar
liyinhao committed
185
186
187
                 submission_prefix=None,
                 show=False,
                 out_dir=None):
188
189
190
191
192
193
194
195
196
197
198
199
        """Evaluation in KITTI protocol.

        Args:
            results (list): Testing results of the dataset.
            metric (str | list[str]): Metrics to be evaluated.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            pklfile_prefix (str | None): The prefix of pkl files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
            submission_prefix (str | None): The prefix of submission datas.
                If not specified, the submission data will not be generated.
liyinhao's avatar
liyinhao committed
200
201
202
203
            show (bool): Whether to visualize.
                Default: False.
            out_dir (str): Path to save the visualization results.
                Default: None.
204
205

        Returns:
zhangwenwei's avatar
zhangwenwei committed
206
            dict[str: float]: results of each evaluation metric
207
208
        """
        result_files, tmp_dir = self.format_results(results, pklfile_prefix)
zhangwenwei's avatar
zhangwenwei committed
209
        from mmdet3d.core.evaluation import kitti_eval
zhangwenwei's avatar
zhangwenwei committed
210
        gt_annos = [info['annos'] for info in self.data_infos]
zhangwenwei's avatar
zhangwenwei committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

        if isinstance(result_files, dict):
            ap_dict = dict()
            for name, result_files_ in result_files.items():
                eval_types = ['bbox', 'bev', '3d']
                if 'img' in name:
                    eval_types = ['bbox']
                ap_result_str, ap_dict_ = kitti_eval(
                    gt_annos,
                    result_files_,
                    self.CLASSES,
                    eval_types=eval_types)
                for ap_type, ap in ap_dict_.items():
                    ap_dict[f'{name}/{ap_type}'] = float('{:.4f}'.format(ap))

                print_log(
                    f'Results of {name}:\n' + ap_result_str, logger=logger)

zhangwenwei's avatar
zhangwenwei committed
229
        else:
zhangwenwei's avatar
zhangwenwei committed
230
231
232
233
234
235
236
237
            if metric == 'img_bbox':
                ap_result_str, ap_dict = kitti_eval(
                    gt_annos, result_files, self.CLASSES, eval_types=['bbox'])
            else:
                ap_result_str, ap_dict = kitti_eval(gt_annos, result_files,
                                                    self.CLASSES)
            print_log('\n' + ap_result_str, logger=logger)

238
239
        if tmp_dir is not None:
            tmp_dir.cleanup()
liyinhao's avatar
liyinhao committed
240
241
        if show:
            self.show(results, out_dir)
242
        return ap_dict
243
244
245
246
247
248

    def bbox2result_kitti(self,
                          net_outputs,
                          class_names,
                          pklfile_prefix=None,
                          submission_prefix=None):
zhangwenwei's avatar
zhangwenwei committed
249
        assert len(net_outputs) == len(self.data_infos)
250
251
        if submission_prefix is not None:
            mmcv.mkdir_or_exist(submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
252
253

        det_annos = []
zhangwenwei's avatar
zhangwenwei committed
254
        print('\nConverting prediction to KITTI format')
zhangwenwei's avatar
zhangwenwei committed
255
256
257
        for idx, pred_dicts in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
zhangwenwei's avatar
zhangwenwei committed
258
            info = self.data_infos[idx]
zhangwenwei's avatar
zhangwenwei committed
259
            sample_idx = info['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
260
            image_shape = info['image']['image_shape'][:2]
zhangwenwei's avatar
zhangwenwei committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

            box_dict = self.convert_valid_bboxes(pred_dicts, info)
            if len(box_dict['bbox']) > 0:
                box_2d_preds = box_dict['bbox']
                box_preds = box_dict['box3d_camera']
                scores = box_dict['scores']
                box_preds_lidar = box_dict['box3d_lidar']
                label_preds = box_dict['label_preds']

                anno = {
                    'name': [],
                    'truncated': [],
                    'occluded': [],
                    'alpha': [],
                    'bbox': [],
                    'dimensions': [],
                    'location': [],
                    'rotation_y': [],
                    'score': []
                }

                for box, box_lidar, bbox, score, label in zip(
                        box_preds, box_preds_lidar, box_2d_preds, scores,
                        label_preds):
                    bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
                    bbox[:2] = np.maximum(bbox[:2], [0, 0])
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(
                        -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6])
                    anno['bbox'].append(bbox)
                    anno['dimensions'].append(box[3:6])
                    anno['location'].append(box[:3])
                    anno['rotation_y'].append(box[6])
                    anno['score'].append(score)

                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)

                if submission_prefix is not None:
                    curr_file = f'{submission_prefix}/{sample_idx:06d}.txt'
                    with open(curr_file, 'w') as f:
                        bbox = anno['bbox']
                        loc = anno['location']
                        dims = anno['dimensions']  # lhw -> hwl

                        for idx in range(len(bbox)):
                            print(
                                '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} '
                                '{:.4f} {:.4f} {:.4f} '
                                '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.
                                format(anno['name'][idx], anno['alpha'][idx],
                                       bbox[idx][0], bbox[idx][1],
                                       bbox[idx][2], bbox[idx][3],
                                       dims[idx][1], dims[idx][2],
                                       dims[idx][0], loc[idx][0], loc[idx][1],
                                       loc[idx][2], anno['rotation_y'][idx],
                                       anno['score'][idx]),
                                file=f)
            else:
                annos.append({
                    'name': np.array([]),
                    'truncated': np.array([]),
                    'occluded': np.array([]),
                    'alpha': np.array([]),
                    'bbox': np.zeros([0, 4]),
                    'dimensions': np.zeros([0, 3]),
                    'location': np.zeros([0, 3]),
                    'rotation_y': np.array([]),
                    'score': np.array([]),
                })
            annos[-1]['sample_idx'] = np.array(
                [sample_idx] * len(annos[-1]['score']), dtype=np.int64)
zhangwenwei's avatar
zhangwenwei committed
335
336
337

            det_annos += annos

338
339
340
        if pklfile_prefix is not None:
            if not pklfile_prefix.endswith(('.pkl', '.pickle')):
                out = f'{pklfile_prefix}.pkl'
zhangwenwei's avatar
zhangwenwei committed
341
342
343
344
345
346
347
348
            mmcv.dump(det_annos, out)
            print('Result is saved to %s' % out)

        return det_annos

    def bbox2result_kitti2d(self,
                            net_outputs,
                            class_names,
349
350
                            pklfile_prefix=None,
                            submission_prefix=None):
liyinhao's avatar
liyinhao committed
351
        """Convert results to kitti format for evaluation and test submission.
zhangwenwei's avatar
zhangwenwei committed
352
353
354
355

        Args:
            net_outputs (List[array]): list of array storing the bbox and score
            class_nanes (List[String]): A list of class names
356
357
            pklfile_prefix (str | None): The prefix of pkl file.
            submission_prefix (str | None): The prefix of submission file.
zhangwenwei's avatar
zhangwenwei committed
358
359

        Return:
liyinhao's avatar
liyinhao committed
360
            List[dict]: A list of dict have the kitti format
zhangwenwei's avatar
zhangwenwei committed
361
        """
zhangwenwei's avatar
zhangwenwei committed
362
        assert len(net_outputs) == len(self.data_infos)
zhangwenwei's avatar
zhangwenwei committed
363
364

        det_annos = []
zhangwenwei's avatar
zhangwenwei committed
365
        print('\nConverting prediction to KITTI format')
zhangwenwei's avatar
zhangwenwei committed
366
367
368
369
370
371
372
373
374
375
376
377
378
        for i, bboxes_per_sample in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
            anno = dict(
                name=[],
                truncated=[],
                occluded=[],
                alpha=[],
                bbox=[],
                dimensions=[],
                location=[],
                rotation_y=[],
                score=[])
zhangwenwei's avatar
zhangwenwei committed
379
            sample_idx = self.data_infos[i]['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

            num_example = 0
            for label in range(len(bboxes_per_sample)):
                bbox = bboxes_per_sample[label]
                for i in range(bbox.shape[0]):
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(0.0)
                    anno['bbox'].append(bbox[i, :4])
                    # set dimensions (height, width, length) to zero
                    anno['dimensions'].append(
                        np.zeros(shape=[3], dtype=np.float32))
                    # set the 3D translation to (-1000, -1000, -1000)
                    anno['location'].append(
                        np.ones(shape=[3], dtype=np.float32) * (-1000.0))
                    anno['rotation_y'].append(0.0)
                    anno['score'].append(bbox[i, 4])
                    num_example += 1

            if num_example == 0:
                annos.append(
                    dict(
                        name=np.array([]),
                        truncated=np.array([]),
                        occluded=np.array([]),
                        alpha=np.array([]),
                        bbox=np.zeros([0, 4]),
                        dimensions=np.zeros([0, 3]),
                        location=np.zeros([0, 3]),
                        rotation_y=np.array([]),
                        score=np.array([]),
                    ))
            else:
                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)

            annos[-1]['sample_idx'] = np.array(
                [sample_idx] * num_example, dtype=np.int64)
            det_annos += annos

421
422
423
424
425
426
427
428
        if pklfile_prefix is not None:
            # save file in pkl format
            pklfile_path = (
                pklfile_prefix[:-4] if pklfile_prefix.endswith(
                    ('.pkl', '.pickle')) else pklfile_prefix)
            mmcv.dump(det_annos, pklfile_path)

        if submission_prefix is not None:
zhangwenwei's avatar
zhangwenwei committed
429
            # save file in submission format
430
431
            mmcv.mkdir_or_exist(submission_prefix)
            print(f'Saving KITTI submission to {submission_prefix}')
zhangwenwei's avatar
zhangwenwei committed
432
            for i, anno in enumerate(det_annos):
zhangwenwei's avatar
zhangwenwei committed
433
                sample_idx = self.data_infos[i]['image']['image_idx']
434
                cur_det_file = f'{submission_prefix}/{sample_idx:06d}.txt'
zhangwenwei's avatar
zhangwenwei committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
                with open(cur_det_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions'][::-1]  # lhw -> hwl
                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:4f} {:4f} {:4f} {:4f} {:4f} {:4f} '
                            '{:4f} {:4f} {:4f} {:4f} {:4f} {:4f} {:4f}'.format(
                                anno['name'][idx],
                                anno['alpha'][idx],
                                *bbox[idx],  # 4 float
                                *dims[idx],  # 3 float
                                *loc[idx],  # 3 float
                                anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f,
                        )
452
            print('Result is saved to {}'.format(submission_prefix))
zhangwenwei's avatar
zhangwenwei committed
453
454
455
456
457

        return det_annos

    def convert_valid_bboxes(self, box_dict, info):
        # TODO: refactor this function
458
459
460
        box_preds = box_dict['boxes_3d']
        scores = box_dict['scores_3d']
        labels = box_dict['labels_3d']
zhangwenwei's avatar
zhangwenwei committed
461
        sample_idx = info['image']['image_idx']
462
463
464
        # TODO: remove the hack of yaw
        box_preds.tensor[:, -1] = box_preds.tensor[:, -1] - np.pi
        box_preds.limit_yaw(offset=0.5, period=np.pi * 2)
zhangwenwei's avatar
zhangwenwei committed
465

466
        if len(box_preds) == 0:
zhangwenwei's avatar
zhangwenwei committed
467
            return dict(
468
469
470
471
472
473
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
                sample_idx=sample_idx)
zhangwenwei's avatar
zhangwenwei committed
474
475
476
477
478

        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        img_shape = info['image']['image_shape']
479
480
481
482
483
        P2 = box_preds.tensor.new_tensor(P2)

        box_preds_camera = box_preds.convert_to(Box3DMode.CAM, rect @ Trv2c)

        box_corners = box_preds_camera.corners
zhangwenwei's avatar
zhangwenwei committed
484
        box_corners_in_image = points_cam2img(box_corners, P2)
zhangwenwei's avatar
zhangwenwei committed
485
486
487
488
489
        # box_corners_in_image: [N, 8, 2]
        minxy = torch.min(box_corners_in_image, dim=1)[0]
        maxxy = torch.max(box_corners_in_image, dim=1)[0]
        box_2d_preds = torch.cat([minxy, maxxy], dim=1)
        # Post-processing
490
491
492
493
494
495
496
497
498
499
        # check box_preds_camera
        image_shape = box_preds.tensor.new_tensor(img_shape)
        valid_cam_inds = ((box_preds_camera.tensor[:, 0] < image_shape[1]) &
                          (box_preds_camera.tensor[:, 1] < image_shape[0]) &
                          (box_preds_camera.tensor[:, 2] > 0) &
                          (box_preds_camera.tensor[:, 3] > 0))
        # check box_preds
        limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range)
        valid_pcd_inds = ((box_preds.center > limit_range[:3]) &
                          (box_preds.center < limit_range[3:]))
zhangwenwei's avatar
zhangwenwei committed
500
501
502
503
504
        valid_inds = valid_cam_inds & valid_pcd_inds.all(-1)

        if valid_inds.sum() > 0:
            return dict(
                bbox=box_2d_preds[valid_inds, :].numpy(),
505
506
507
508
                box3d_camera=box_preds_camera[valid_inds].tensor.numpy(),
                box3d_lidar=box_preds[valid_inds].tensor.numpy(),
                scores=scores[valid_inds].numpy(),
                label_preds=labels[valid_inds].numpy(),
zhangwenwei's avatar
zhangwenwei committed
509
510
511
512
                sample_idx=sample_idx,
            )
        else:
            return dict(
513
514
515
516
517
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
zhangwenwei's avatar
zhangwenwei committed
518
519
                sample_idx=sample_idx,
            )
liyinhao's avatar
liyinhao committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542

    def show(self, results, out_dir):
        assert out_dir is not None, 'Expect out_dir, got none.'
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['point_cloud']['velodyne_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
            points = np.fromfile(
                osp.join(self.root_split, 'velodyne_reduced',
                         f'{file_name}.bin'),
                dtype=np.float32).reshape(-1, 4)
            points = points[..., [1, 0, 2]]
            points[..., 0] *= -1
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor
            gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR,
                                          Box3DMode.DEPTH)
            gt_bboxes[..., 2] += gt_bboxes[..., 5] / 2
            pred_bboxes = result['boxes_3d'].tensor.numpy()
            pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR,
                                            Box3DMode.DEPTH)
            pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
            show_result(points, gt_bboxes, pred_bboxes, out_dir, file_name)
        print(results)