custom_3d.py 13.2 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import tempfile
3
import warnings
zhangwenwei's avatar
zhangwenwei committed
4
from os import path as osp
5
6
7

import mmcv
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
8
from torch.utils.data import Dataset
9
10

from mmdet.datasets import DATASETS
wuyuefeng's avatar
Demo  
wuyuefeng committed
11
from ..core.bbox import get_box_type
12
from .pipelines import Compose
13
from .utils import extract_result_dict, get_loading_pipeline
14
15
16


@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
17
class Custom3DDataset(Dataset):
zhangwenwei's avatar
zhangwenwei committed
18
    """Customized 3D dataset.
19
20
21
22
23
24
25
26
27
28
29

    This is the base dataset of SUNRGB-D, ScanNet, nuScenes, and KITTI
    dataset.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
wangtai's avatar
wangtai committed
30
        modality (dict, optional): Modality to specify the sensor data used
31
32
33
34
35
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'LiDAR'. Available options includes
wangtai's avatar
wangtai committed
36

wangtai's avatar
wangtai committed
37
38
39
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
40
41
42
43
44
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
45
46

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
47
                 data_root,
48
49
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
50
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
51
                 modality=None,
52
                 box_type_3d='LiDAR',
wuyuefeng's avatar
Votenet  
wuyuefeng committed
53
                 filter_empty_gt=True,
zhangwenwei's avatar
zhangwenwei committed
54
                 test_mode=False):
55
        super().__init__()
zhangwenwei's avatar
zhangwenwei committed
56
57
        self.data_root = data_root
        self.ann_file = ann_file
58
        self.test_mode = test_mode
zhangwenwei's avatar
zhangwenwei committed
59
        self.modality = modality
wuyuefeng's avatar
Votenet  
wuyuefeng committed
60
        self.filter_empty_gt = filter_empty_gt
wuyuefeng's avatar
Demo  
wuyuefeng committed
61
        self.box_type_3d, self.box_mode_3d = get_box_type(box_type_3d)
zhangwenwei's avatar
zhangwenwei committed
62
63

        self.CLASSES = self.get_classes(classes)
64
        self.cat2id = {name: i for i, name in enumerate(self.CLASSES)}
zhangwenwei's avatar
zhangwenwei committed
65
        self.data_infos = self.load_annotations(self.ann_file)
66
67
68
69

        if pipeline is not None:
            self.pipeline = Compose(pipeline)

zhangwenwei's avatar
zhangwenwei committed
70
71
72
73
74
        # set group flag for the sampler
        if not self.test_mode:
            self._set_group_flag()

    def load_annotations(self, ann_file):
75
76
77
78
79
80
81
82
        """Load annotations from ann_file.

        Args:
            ann_file (str): Path of the annotation file.

        Returns:
            list[dict]: List of annotations.
        """
zhangwenwei's avatar
zhangwenwei committed
83
        return mmcv.load(ann_file)
84
85

    def get_data_info(self, index):
86
87
88
89
90
91
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
92
            dict: Data information that will be passed to the data
zhangwenwei's avatar
zhangwenwei committed
93
                preprocessing pipelines. It includes the following keys:
94

wangtai's avatar
wangtai committed
95
96
97
98
                - sample_idx (str): Sample index.
                - pts_filename (str): Filename of point clouds.
                - file_name (str): Filename of point clouds.
                - ann_info (dict): Annotation info.
99
        """
100
101
        info = self.data_infos[index]
        sample_idx = info['point_cloud']['lidar_idx']
liyinhao's avatar
liyinhao committed
102
        pts_filename = osp.join(self.data_root, info['pts_path'])
103

liyinhao's avatar
liyinhao committed
104
105
106
107
        input_dict = dict(
            pts_filename=pts_filename,
            sample_idx=sample_idx,
            file_name=pts_filename)
108

zhangwenwei's avatar
zhangwenwei committed
109
        if not self.test_mode:
liyinhao's avatar
liyinhao committed
110
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
111
            input_dict['ann_info'] = annos
112
            if self.filter_empty_gt and ~(annos['gt_labels_3d'] != -1).any():
zhangwenwei's avatar
zhangwenwei committed
113
                return None
114
115
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
116
    def pre_pipeline(self, results):
117
118
119
        """Initialization before data preparation.

        Args:
120
            results (dict): Dict before data preprocessing.
121

wangtai's avatar
wangtai committed
122
123
124
125
126
127
128
129
130
                - img_fields (list): Image fields.
                - bbox3d_fields (list): 3D bounding boxes fields.
                - pts_mask_fields (list): Mask fields of points.
                - pts_seg_fields (list): Mask fields of point segments.
                - bbox_fields (list): Fields of bounding boxes.
                - mask_fields (list): Fields of masks.
                - seg_fields (list): Segment fields.
                - box_type_3d (str): 3D box type.
                - box_mode_3d (str): 3D box mode.
131
        """
zhangwenwei's avatar
zhangwenwei committed
132
        results['img_fields'] = []
zhangwenwei's avatar
zhangwenwei committed
133
134
135
        results['bbox3d_fields'] = []
        results['pts_mask_fields'] = []
        results['pts_seg_fields'] = []
zhangwenwei's avatar
zhangwenwei committed
136
137
138
        results['bbox_fields'] = []
        results['mask_fields'] = []
        results['seg_fields'] = []
139
140
        results['box_type_3d'] = self.box_type_3d
        results['box_mode_3d'] = self.box_mode_3d
141

liyinhao's avatar
liyinhao committed
142
    def prepare_train_data(self, index):
143
144
145
146
147
148
        """Training data preparation.

        Args:
            index (int): Index for accessing the target data.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
149
            dict: Training data dict of the corresponding index.
150
        """
liyinhao's avatar
liyinhao committed
151
        input_dict = self.get_data_info(index)
152
153
        if input_dict is None:
            return None
zhangwenwei's avatar
zhangwenwei committed
154
        self.pre_pipeline(input_dict)
155
        example = self.pipeline(input_dict)
156
157
158
        if self.filter_empty_gt and \
                (example is None or
                    ~(example['gt_labels_3d']._data != -1).any()):
159
160
161
            return None
        return example

162
    def prepare_test_data(self, index):
163
164
165
166
167
168
        """Prepare data for testing.

        Args:
            index (int): Index for accessing the target data.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
169
            dict: Testing data dict of the corresponding index.
170
        """
171
        input_dict = self.get_data_info(index)
zhangwenwei's avatar
zhangwenwei committed
172
        self.pre_pipeline(input_dict)
173
174
        example = self.pipeline(input_dict)
        return example
175

liyinhao's avatar
liyinhao committed
176
177
    @classmethod
    def get_classes(cls, classes=None):
178
179
        """Get class names of current dataset.

liyinhao's avatar
liyinhao committed
180
        Args:
181
            classes (Sequence[str] | str): If classes is None, use
liyinhao's avatar
liyinhao committed
182
183
184
185
                default CLASSES defined by builtin dataset. If classes is a
                string, take it as a file name. The file contains the name of
                classes where each line contains one class name. If classes is
                a tuple or list, override the CLASSES defined by the dataset.
zhangwenwei's avatar
zhangwenwei committed
186
187

        Return:
wangtai's avatar
wangtai committed
188
            list[str]: A list of class names.
liyinhao's avatar
liyinhao committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        """
        if classes is None:
            return cls.CLASSES

        if isinstance(classes, str):
            # take it as a file path
            class_names = mmcv.list_from_file(classes)
        elif isinstance(classes, (tuple, list)):
            class_names = classes
        else:
            raise ValueError(f'Unsupported type {type(classes)} of classes.')

        return class_names

liyinhao's avatar
liyinhao committed
203
204
205
206
    def format_results(self,
                       outputs,
                       pklfile_prefix=None,
                       submission_prefix=None):
207
208
209
210
        """Format the results to pkl file.

        Args:
            outputs (list[dict]): Testing results of the dataset.
211
            pklfile_prefix (str): The prefix of pkl files. It includes
212
213
214
215
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
216
217
            tuple: (outputs, tmp_dir), outputs is the detection results,
                tmp_dir is the temporal directory created for saving json
zhangwenwei's avatar
zhangwenwei committed
218
                files when ``jsonfile_prefix`` is not specified.
219
        """
liyinhao's avatar
liyinhao committed
220
221
222
223
224
225
        if pklfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(tmp_dir.name, 'results')
            out = f'{pklfile_prefix}.pkl'
        mmcv.dump(outputs, out)
        return outputs, tmp_dir
226

liyinhao's avatar
liyinhao committed
227
228
229
230
231
232
    def evaluate(self,
                 results,
                 metric=None,
                 iou_thr=(0.25, 0.5),
                 logger=None,
                 show=False,
233
234
                 out_dir=None,
                 pipeline=None):
235
236
237
238
239
        """Evaluate.

        Evaluation in indoor protocol.

        Args:
liyinhao's avatar
liyinhao committed
240
            results (list[dict]): List of results.
241
242
243
244
245
246
            metric (str | list[str], optional): Metrics to be evaluated.
                Defaults to None.
            iou_thr (list[float]): AP IoU thresholds. Defaults to (0.25, 0.5).
            logger (logging.Logger | str, optional): Logger used for printing
                related information during evaluation. Defaults to None.
            show (bool, optional): Whether to visualize.
liyinhao's avatar
liyinhao committed
247
                Default: False.
248
            out_dir (str, optional): Path to save the visualization results.
liyinhao's avatar
liyinhao committed
249
                Default: None.
250
251
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
252

liyinhao's avatar
liyinhao committed
253
254
        Returns:
            dict: Evaluation results.
255
256
        """
        from mmdet3d.core.evaluation import indoor_eval
liyinhao's avatar
liyinhao committed
257
258
        assert isinstance(
            results, list), f'Expect results to be list, got {type(results)}.'
zhangwenwei's avatar
zhangwenwei committed
259
        assert len(results) > 0, 'Expect length of results > 0.'
wuyuefeng's avatar
Votenet  
wuyuefeng committed
260
        assert len(results) == len(self.data_infos)
liyinhao's avatar
liyinhao committed
261
262
263
        assert isinstance(
            results[0], dict
        ), f'Expect elements in results to be dict, got {type(results[0])}.'
264
        gt_annos = [info['annos'] for info in self.data_infos]
zhangwenwei's avatar
zhangwenwei committed
265
        label2cat = {i: cat_id for i, cat_id in enumerate(self.CLASSES)}
zhangwenwei's avatar
zhangwenwei committed
266
        ret_dict = indoor_eval(
wuyuefeng's avatar
wuyuefeng committed
267
268
269
270
271
272
273
            gt_annos,
            results,
            iou_thr,
            label2cat,
            logger=logger,
            box_type_3d=self.box_type_3d,
            box_mode_3d=self.box_mode_3d)
liyinhao's avatar
liyinhao committed
274
        if show:
275
            self.show(results, out_dir, pipeline=pipeline)
wuyuefeng's avatar
wuyuefeng committed
276

liyinhao's avatar
liyinhao committed
277
        return ret_dict
zhangwenwei's avatar
zhangwenwei committed
278

279
280
281
282
283
284
285
286
287
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        raise NotImplementedError('_build_default_pipeline is not implemented '
                                  f'for dataset {self.__class__.__name__}')

    def _get_pipeline(self, pipeline):
        """Get data loading pipeline in self.show/evaluate function.

        Args:
288
            pipeline (list[dict]): Input pipeline. If None is given,
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
                get from self.pipeline.
        """
        if pipeline is None:
            if not hasattr(self, 'pipeline') or self.pipeline is None:
                warnings.warn(
                    'Use default pipeline for data loading, this may cause '
                    'errors when data is on ceph')
                return self._build_default_pipeline()
            loading_pipeline = get_loading_pipeline(self.pipeline.transforms)
            return Compose(loading_pipeline)
        return Compose(pipeline)

    def _extract_data(self, index, pipeline, key, load_annos=False):
        """Load data using input pipeline and extract data according to key.

        Args:
            index (int): Index for accessing the target data.
            pipeline (:obj:`Compose`): Composed data loading pipeline.
            key (str | list[str]): One single or a list of data key.
            load_annos (bool): Whether to load data annotations.
                If True, need to set self.test_mode as False before loading.

        Returns:
            np.ndarray | torch.Tensor | list[np.ndarray | torch.Tensor]:
                A single or a list of loaded data.
        """
        assert pipeline is not None, 'data loading pipeline is not provided'
        # when we want to load ground-truth via pipeline (e.g. bbox, seg mask)
        # we need to set self.test_mode as False so that we have 'annos'
        if load_annos:
            original_test_mode = self.test_mode
            self.test_mode = False
        input_dict = self.get_data_info(index)
        self.pre_pipeline(input_dict)
        example = pipeline(input_dict)

        # extract data items according to keys
        if isinstance(key, str):
327
            data = extract_result_dict(example, key)
328
        else:
329
            data = [extract_result_dict(example, k) for k in key]
330
331
332
333
334
        if load_annos:
            self.test_mode = original_test_mode

        return data

zhangwenwei's avatar
zhangwenwei committed
335
    def __len__(self):
336
337
338
339
340
        """Return the length of data infos.

        Returns:
            int: Length of data infos.
        """
zhangwenwei's avatar
zhangwenwei committed
341
342
343
        return len(self.data_infos)

    def _rand_another(self, idx):
344
345
346
347
348
        """Randomly get another item with the same flag.

        Returns:
            int: Another index of item with the same flag.
        """
zhangwenwei's avatar
zhangwenwei committed
349
350
351
352
        pool = np.where(self.flag == self.flag[idx])[0]
        return np.random.choice(pool)

    def __getitem__(self, idx):
353
354
355
356
357
        """Get item from infos according to the given index.

        Returns:
            dict: Data dictionary of the corresponding index.
        """
zhangwenwei's avatar
zhangwenwei committed
358
359
360
361
362
363
364
365
366
367
368
369
370
        if self.test_mode:
            return self.prepare_test_data(idx)
        while True:
            data = self.prepare_train_data(idx)
            if data is None:
                idx = self._rand_another(idx)
                continue
            return data

    def _set_group_flag(self):
        """Set flag according to image aspect ratio.

        Images with aspect ratio greater than 1 will be set as group 1,
371
372
        otherwise group 0. In 3D datasets, they are all the same, thus are all
        zeros.
zhangwenwei's avatar
zhangwenwei committed
373
374
        """
        self.flag = np.zeros(len(self), dtype=np.uint8)