custom_3d.py 13 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
import mmcv
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
4
import tempfile
5
import warnings
zhangwenwei's avatar
zhangwenwei committed
6
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
7
from torch.utils.data import Dataset
8
9

from mmdet.datasets import DATASETS
wuyuefeng's avatar
Demo  
wuyuefeng committed
10
from ..core.bbox import get_box_type
11
from .pipelines import Compose
12
from .utils import extract_result_dict, get_loading_pipeline
13
14
15


@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
16
class Custom3DDataset(Dataset):
zhangwenwei's avatar
zhangwenwei committed
17
    """Customized 3D dataset.
18
19
20
21
22
23
24
25
26
27
28

    This is the base dataset of SUNRGB-D, ScanNet, nuScenes, and KITTI
    dataset.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
wangtai's avatar
wangtai committed
29
        modality (dict, optional): Modality to specify the sensor data used
30
31
32
33
34
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'LiDAR'. Available options includes
wangtai's avatar
wangtai committed
35

wangtai's avatar
wangtai committed
36
37
38
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
39
40
41
42
43
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
44
45

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
46
                 data_root,
47
48
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
49
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
50
                 modality=None,
51
                 box_type_3d='LiDAR',
wuyuefeng's avatar
Votenet  
wuyuefeng committed
52
                 filter_empty_gt=True,
zhangwenwei's avatar
zhangwenwei committed
53
                 test_mode=False):
54
        super().__init__()
zhangwenwei's avatar
zhangwenwei committed
55
56
        self.data_root = data_root
        self.ann_file = ann_file
57
        self.test_mode = test_mode
zhangwenwei's avatar
zhangwenwei committed
58
        self.modality = modality
wuyuefeng's avatar
Votenet  
wuyuefeng committed
59
        self.filter_empty_gt = filter_empty_gt
wuyuefeng's avatar
Demo  
wuyuefeng committed
60
        self.box_type_3d, self.box_mode_3d = get_box_type(box_type_3d)
zhangwenwei's avatar
zhangwenwei committed
61
62

        self.CLASSES = self.get_classes(classes)
63
        self.cat2id = {name: i for i, name in enumerate(self.CLASSES)}
zhangwenwei's avatar
zhangwenwei committed
64
        self.data_infos = self.load_annotations(self.ann_file)
65
66
67
68

        if pipeline is not None:
            self.pipeline = Compose(pipeline)

zhangwenwei's avatar
zhangwenwei committed
69
70
71
72
73
        # set group flag for the sampler
        if not self.test_mode:
            self._set_group_flag()

    def load_annotations(self, ann_file):
74
75
76
77
78
79
80
81
        """Load annotations from ann_file.

        Args:
            ann_file (str): Path of the annotation file.

        Returns:
            list[dict]: List of annotations.
        """
zhangwenwei's avatar
zhangwenwei committed
82
        return mmcv.load(ann_file)
83
84

    def get_data_info(self, index):
85
86
87
88
89
90
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
91
92
            dict: Data information that will be passed to the data \
                preprocessing pipelines. It includes the following keys:
93

wangtai's avatar
wangtai committed
94
95
96
97
                - sample_idx (str): Sample index.
                - pts_filename (str): Filename of point clouds.
                - file_name (str): Filename of point clouds.
                - ann_info (dict): Annotation info.
98
        """
99
100
        info = self.data_infos[index]
        sample_idx = info['point_cloud']['lidar_idx']
liyinhao's avatar
liyinhao committed
101
        pts_filename = osp.join(self.data_root, info['pts_path'])
102

liyinhao's avatar
liyinhao committed
103
104
105
106
        input_dict = dict(
            pts_filename=pts_filename,
            sample_idx=sample_idx,
            file_name=pts_filename)
107

zhangwenwei's avatar
zhangwenwei committed
108
        if not self.test_mode:
liyinhao's avatar
liyinhao committed
109
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
110
            input_dict['ann_info'] = annos
111
            if self.filter_empty_gt and ~(annos['gt_labels_3d'] != -1).any():
zhangwenwei's avatar
zhangwenwei committed
112
                return None
113
114
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
115
    def pre_pipeline(self, results):
116
117
118
        """Initialization before data preparation.

        Args:
119
            results (dict): Dict before data preprocessing.
120

wangtai's avatar
wangtai committed
121
122
123
124
125
126
127
128
129
                - img_fields (list): Image fields.
                - bbox3d_fields (list): 3D bounding boxes fields.
                - pts_mask_fields (list): Mask fields of points.
                - pts_seg_fields (list): Mask fields of point segments.
                - bbox_fields (list): Fields of bounding boxes.
                - mask_fields (list): Fields of masks.
                - seg_fields (list): Segment fields.
                - box_type_3d (str): 3D box type.
                - box_mode_3d (str): 3D box mode.
130
        """
zhangwenwei's avatar
zhangwenwei committed
131
        results['img_fields'] = []
zhangwenwei's avatar
zhangwenwei committed
132
133
134
        results['bbox3d_fields'] = []
        results['pts_mask_fields'] = []
        results['pts_seg_fields'] = []
zhangwenwei's avatar
zhangwenwei committed
135
136
137
        results['bbox_fields'] = []
        results['mask_fields'] = []
        results['seg_fields'] = []
138
139
        results['box_type_3d'] = self.box_type_3d
        results['box_mode_3d'] = self.box_mode_3d
140

liyinhao's avatar
liyinhao committed
141
    def prepare_train_data(self, index):
142
143
144
145
146
147
        """Training data preparation.

        Args:
            index (int): Index for accessing the target data.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
148
            dict: Training data dict of the corresponding index.
149
        """
liyinhao's avatar
liyinhao committed
150
        input_dict = self.get_data_info(index)
151
152
        if input_dict is None:
            return None
zhangwenwei's avatar
zhangwenwei committed
153
        self.pre_pipeline(input_dict)
154
        example = self.pipeline(input_dict)
155
156
157
        if self.filter_empty_gt and \
                (example is None or
                    ~(example['gt_labels_3d']._data != -1).any()):
158
159
160
            return None
        return example

161
    def prepare_test_data(self, index):
162
163
164
165
166
167
        """Prepare data for testing.

        Args:
            index (int): Index for accessing the target data.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
168
            dict: Testing data dict of the corresponding index.
169
        """
170
        input_dict = self.get_data_info(index)
zhangwenwei's avatar
zhangwenwei committed
171
        self.pre_pipeline(input_dict)
172
173
        example = self.pipeline(input_dict)
        return example
174

liyinhao's avatar
liyinhao committed
175
176
    @classmethod
    def get_classes(cls, classes=None):
177
178
        """Get class names of current dataset.

liyinhao's avatar
liyinhao committed
179
180
181
182
183
184
        Args:
            classes (Sequence[str] | str | None): If classes is None, use
                default CLASSES defined by builtin dataset. If classes is a
                string, take it as a file name. The file contains the name of
                classes where each line contains one class name. If classes is
                a tuple or list, override the CLASSES defined by the dataset.
zhangwenwei's avatar
zhangwenwei committed
185
186

        Return:
wangtai's avatar
wangtai committed
187
            list[str]: A list of class names.
liyinhao's avatar
liyinhao committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        """
        if classes is None:
            return cls.CLASSES

        if isinstance(classes, str):
            # take it as a file path
            class_names = mmcv.list_from_file(classes)
        elif isinstance(classes, (tuple, list)):
            class_names = classes
        else:
            raise ValueError(f'Unsupported type {type(classes)} of classes.')

        return class_names

liyinhao's avatar
liyinhao committed
202
203
204
205
    def format_results(self,
                       outputs,
                       pklfile_prefix=None,
                       submission_prefix=None):
206
207
208
209
210
211
212
213
214
        """Format the results to pkl file.

        Args:
            outputs (list[dict]): Testing results of the dataset.
            pklfile_prefix (str | None): The prefix of pkl files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
215
216
217
            tuple: (outputs, tmp_dir), outputs is the detection results, \
                tmp_dir is the temporal directory created for saving json \
                files when ``jsonfile_prefix`` is not specified.
218
        """
liyinhao's avatar
liyinhao committed
219
220
221
222
223
224
        if pklfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(tmp_dir.name, 'results')
            out = f'{pklfile_prefix}.pkl'
        mmcv.dump(outputs, out)
        return outputs, tmp_dir
225

liyinhao's avatar
liyinhao committed
226
227
228
229
230
231
    def evaluate(self,
                 results,
                 metric=None,
                 iou_thr=(0.25, 0.5),
                 logger=None,
                 show=False,
232
233
                 out_dir=None,
                 pipeline=None):
234
235
236
237
238
        """Evaluate.

        Evaluation in indoor protocol.

        Args:
liyinhao's avatar
liyinhao committed
239
            results (list[dict]): List of results.
wuyuefeng's avatar
wuyuefeng committed
240
241
            metric (str | list[str]): Metrics to be evaluated.
            iou_thr (list[float]): AP IoU thresholds.
liyinhao's avatar
liyinhao committed
242
243
244
245
            show (bool): Whether to visualize.
                Default: False.
            out_dir (str): Path to save the visualization results.
                Default: None.
246
247
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
248

liyinhao's avatar
liyinhao committed
249
250
        Returns:
            dict: Evaluation results.
251
252
        """
        from mmdet3d.core.evaluation import indoor_eval
liyinhao's avatar
liyinhao committed
253
254
        assert isinstance(
            results, list), f'Expect results to be list, got {type(results)}.'
zhangwenwei's avatar
zhangwenwei committed
255
        assert len(results) > 0, 'Expect length of results > 0.'
wuyuefeng's avatar
Votenet  
wuyuefeng committed
256
        assert len(results) == len(self.data_infos)
liyinhao's avatar
liyinhao committed
257
258
259
        assert isinstance(
            results[0], dict
        ), f'Expect elements in results to be dict, got {type(results[0])}.'
260
        gt_annos = [info['annos'] for info in self.data_infos]
zhangwenwei's avatar
zhangwenwei committed
261
        label2cat = {i: cat_id for i, cat_id in enumerate(self.CLASSES)}
zhangwenwei's avatar
zhangwenwei committed
262
        ret_dict = indoor_eval(
wuyuefeng's avatar
wuyuefeng committed
263
264
265
266
267
268
269
            gt_annos,
            results,
            iou_thr,
            label2cat,
            logger=logger,
            box_type_3d=self.box_type_3d,
            box_mode_3d=self.box_mode_3d)
liyinhao's avatar
liyinhao committed
270
        if show:
271
            self.show(results, out_dir, pipeline=pipeline)
wuyuefeng's avatar
wuyuefeng committed
272

liyinhao's avatar
liyinhao committed
273
        return ret_dict
zhangwenwei's avatar
zhangwenwei committed
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        raise NotImplementedError('_build_default_pipeline is not implemented '
                                  f'for dataset {self.__class__.__name__}')

    def _get_pipeline(self, pipeline):
        """Get data loading pipeline in self.show/evaluate function.

        Args:
            pipeline (list[dict] | None): Input pipeline. If None is given, \
                get from self.pipeline.
        """
        if pipeline is None:
            if not hasattr(self, 'pipeline') or self.pipeline is None:
                warnings.warn(
                    'Use default pipeline for data loading, this may cause '
                    'errors when data is on ceph')
                return self._build_default_pipeline()
            loading_pipeline = get_loading_pipeline(self.pipeline.transforms)
            return Compose(loading_pipeline)
        return Compose(pipeline)

    def _extract_data(self, index, pipeline, key, load_annos=False):
        """Load data using input pipeline and extract data according to key.

        Args:
            index (int): Index for accessing the target data.
            pipeline (:obj:`Compose`): Composed data loading pipeline.
            key (str | list[str]): One single or a list of data key.
            load_annos (bool): Whether to load data annotations.
                If True, need to set self.test_mode as False before loading.

        Returns:
            np.ndarray | torch.Tensor | list[np.ndarray | torch.Tensor]:
                A single or a list of loaded data.
        """
        assert pipeline is not None, 'data loading pipeline is not provided'
        # when we want to load ground-truth via pipeline (e.g. bbox, seg mask)
        # we need to set self.test_mode as False so that we have 'annos'
        if load_annos:
            original_test_mode = self.test_mode
            self.test_mode = False
        input_dict = self.get_data_info(index)
        self.pre_pipeline(input_dict)
        example = pipeline(input_dict)

        # extract data items according to keys
        if isinstance(key, str):
323
            data = extract_result_dict(example, key)
324
        else:
325
            data = [extract_result_dict(example, k) for k in key]
326
327
328
329
330
        if load_annos:
            self.test_mode = original_test_mode

        return data

zhangwenwei's avatar
zhangwenwei committed
331
    def __len__(self):
332
333
334
335
336
        """Return the length of data infos.

        Returns:
            int: Length of data infos.
        """
zhangwenwei's avatar
zhangwenwei committed
337
338
339
        return len(self.data_infos)

    def _rand_another(self, idx):
340
341
342
343
344
        """Randomly get another item with the same flag.

        Returns:
            int: Another index of item with the same flag.
        """
zhangwenwei's avatar
zhangwenwei committed
345
346
347
348
        pool = np.where(self.flag == self.flag[idx])[0]
        return np.random.choice(pool)

    def __getitem__(self, idx):
349
350
351
352
353
        """Get item from infos according to the given index.

        Returns:
            dict: Data dictionary of the corresponding index.
        """
zhangwenwei's avatar
zhangwenwei committed
354
355
356
357
358
359
360
361
362
363
364
365
366
        if self.test_mode:
            return self.prepare_test_data(idx)
        while True:
            data = self.prepare_train_data(idx)
            if data is None:
                idx = self._rand_another(idx)
                continue
            return data

    def _set_group_flag(self):
        """Set flag according to image aspect ratio.

        Images with aspect ratio greater than 1 will be set as group 1,
367
368
        otherwise group 0. In 3D datasets, they are all the same, thus are all
        zeros.
zhangwenwei's avatar
zhangwenwei committed
369
370
        """
        self.flag = np.zeros(len(self), dtype=np.uint8)