base.py 6.46 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
from typing import List, Union
jshilong's avatar
jshilong committed
3

4
from mmdet.models import BaseDetector
5
from mmengine.structures import InstanceData
6

7
from mmdet3d.registry import MODELS
zhangshilong's avatar
zhangshilong committed
8
9
from mmdet3d.structures.det3d_data_sample import (ForwardResults,
                                                  OptSampleList, SampleList)
10
11
from mmdet3d.utils.typing_utils import (OptConfigType, OptInstanceList,
                                        OptMultiConfig)
zhangwenwei's avatar
zhangwenwei committed
12
13


14
@MODELS.register_module()
zhangwenwei's avatar
zhangwenwei committed
15
class Base3DDetector(BaseDetector):
16
    """Base class for 3D detectors.
zhangwenwei's avatar
zhangwenwei committed
17

18
    Args:
19
20
21
22
23
       data_preprocessor (dict or ConfigDict, optional): The pre-process
           config of :class:`BaseDataPreprocessor`.  it usually includes,
            ``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``.
       init_cfg (dict or ConfigDict, optional): the config to control the
           initialization. Defaults to None.
24
25
26
    """

    def __init__(self,
27
                 data_preprocessor: OptConfigType = None,
28
                 init_cfg: OptMultiConfig = None) -> None:
29
30
        super().__init__(
            data_preprocessor=data_preprocessor, init_cfg=init_cfg)
31

32
    def forward(self,
jshilong's avatar
jshilong committed
33
34
                inputs: Union[dict, List[dict]],
                data_samples: OptSampleList = None,
35
36
37
                mode: str = 'tensor',
                **kwargs) -> ForwardResults:
        """The unified entry for a forward process in both training and test.
38

39
        The method should accept three modes: "tensor", "predict" and "loss":
40

41
42
43
        - "tensor": Forward the whole network and return tensor or tuple of
        tensor without any post-processing, same as a common nn.Module.
        - "predict": Forward and return the predictions, which are fully
jshilong's avatar
jshilong committed
44
        processed to a list of :obj:`Det3DDataSample`.
45
46
        - "loss": Forward and return a dict of losses according to the given
        inputs and data samples.
47

48
49
        Note that this method doesn't handle neither back propagation nor
        optimizer updating, which are done in the :meth:`train_step`.
50
51

        Args:
jshilong's avatar
jshilong committed
52
53
54
55
56
57
58
            inputs  (dict | list[dict]): When it is a list[dict], the
                outer list indicate the test time augmentation. Each
                dict contains batch inputs
                which include 'points' and 'imgs' keys.

                - points (list[torch.Tensor]): Point cloud of each sample.
                - imgs (torch.Tensor): Image tensor has shape (B, C, H, W).
jshilong's avatar
jshilong committed
59
60
            data_samples (list[:obj:`Det3DDataSample`],
                list[list[:obj:`Det3DDataSample`]], optional): The
jshilong's avatar
jshilong committed
61
62
63
64
                annotation data of every samples. When it is a list[list], the
                outer list indicate the test time augmentation, and the
                inter list indicate the batch. Otherwise, the list simply
                indicate the batch. Defaults to None.
65
            mode (str): Return what kind of value. Defaults to 'tensor'.
66
67

        Returns:
68
            The return type depends on ``mode``.
69

70
            - If ``mode="tensor"``, return a tensor or a tuple of tensor.
jshilong's avatar
jshilong committed
71
            - If ``mode="predict"``, return a list of :obj:`Det3DDataSample`.
72
73
74
            - If ``mode="loss"``, return a dict of tensor.
        """
        if mode == 'loss':
jshilong's avatar
jshilong committed
75
            return self.loss(inputs, data_samples, **kwargs)
76
        elif mode == 'predict':
jshilong's avatar
jshilong committed
77
78
79
80
81
82
83
84
85
86
            if isinstance(data_samples[0], list):
                # aug test
                assert len(data_samples[0]) == 1, 'Only support ' \
                                                  'batch_size 1 ' \
                                                  'in mmdet3d when ' \
                                                  'do the test' \
                                                  'time augmentation.'
                return self.aug_test(inputs, data_samples, **kwargs)
            else:
                return self.predict(inputs, data_samples, **kwargs)
87
        elif mode == 'tensor':
jshilong's avatar
jshilong committed
88
            return self._forward(inputs, data_samples, **kwargs)
89
        else:
90
91
            raise RuntimeError(f'Invalid mode "{mode}". '
                               'Only supports loss, predict and tensor mode')
92

93
    def add_pred_to_datasample(
jshilong's avatar
jshilong committed
94
        self,
95
96
97
        data_samples: SampleList,
        data_instances_3d: OptInstanceList = None,
        data_instances_2d: OptInstanceList = None,
jshilong's avatar
jshilong committed
98
    ) -> SampleList:
99
        """Convert results list to `Det3DDataSample`.
100

101
102
        Subclasses could override it to be compatible for some multi-modality
        3D detectors.
103
104

        Args:
105
106
107
108
109
            data_samples (list[:obj:`Det3DDataSample`]): The input data.
            data_instances_3d (list[:obj:`InstanceData`], optional): 3D
                Detection results of each sample.
            data_instances_2d (list[:obj:`InstanceData`], optional): 2D
                Detection results of each sample.
110
111
112

        Returns:
            list[:obj:`Det3DDataSample`]: Detection results of the
113
            input. Each Det3DDataSample usually contains
jshilong's avatar
jshilong committed
114
115
116
117
118
119
120
            'pred_instances_3d'. And the ``pred_instances_3d`` normally
            contains following keys.

            - scores_3d (Tensor): Classification scores, has a shape
              (num_instance, )
            - labels_3d (Tensor): Labels of 3D bboxes, has a shape
              (num_instances, ).
ChaimZhu's avatar
ChaimZhu committed
121
            - bboxes_3d (Tensor): Contains a tensor with shape
jshilong's avatar
jshilong committed
122
              (num_instances, C) where C >=7.
123

jshilong's avatar
jshilong committed
124
125
            When there are image prediction in some models, it should
            contains  `pred_instances`, And the ``pred_instances`` normally
126
127
            contains following keys.

jshilong's avatar
jshilong committed
128
129
130
131
132
133
            - scores (Tensor): Classification scores of image, has a shape
              (num_instance, )
            - labels (Tensor): Predict Labels of 2D bboxes, has a shape
              (num_instances, ).
            - bboxes (Tensor): Contains a tensor with shape
              (num_instances, 4).
134
        """
jshilong's avatar
jshilong committed
135

136
137
138
        assert (data_instances_2d is not None) or \
               (data_instances_3d is not None),\
               'please pass at least one type of data_samples'
zhangshilong's avatar
zhangshilong committed
139

140
141
142
        if data_instances_2d is None:
            data_instances_2d = [
                InstanceData() for _ in range(len(data_instances_3d))
143
            ]
144
145
146
        if data_instances_3d is None:
            data_instances_3d = [
                InstanceData() for _ in range(len(data_instances_2d))
147
            ]
148
149
150
151
152

        for i, data_sample in enumerate(data_samples):
            data_sample.pred_instances_3d = data_instances_3d[i]
            data_sample.pred_instances = data_instances_2d[i]
        return data_samples