transforms_3d.py 100 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import random
3
import warnings
4
from typing import List, Optional, Sequence, Tuple, Union
5
6

import cv2
7
import mmcv
8
import numpy as np
9
import torch
10
from mmcv.transforms import BaseTransform, Compose, RandomResize, Resize
11
12
from mmdet.datasets.transforms import (PhotoMetricDistortion, RandomCrop,
                                       RandomFlip)
13
from mmengine import is_list_of, is_tuple_of
zhangwenwei's avatar
zhangwenwei committed
14

zhangshilong's avatar
zhangshilong committed
15
from mmdet3d.models.task_modules import VoxelGenerator
16
from mmdet3d.registry import TRANSFORMS
zhangshilong's avatar
zhangshilong committed
17
18
19
20
from mmdet3d.structures import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                                LiDARInstance3DBoxes)
from mmdet3d.structures.ops import box_np_ops
from mmdet3d.structures.points import BasePoints
zhangwenwei's avatar
zhangwenwei committed
21
22
23
from .data_augment_utils import noise_per_object_v3_


24
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
25
class RandomDropPointsColor(BaseTransform):
26
27
28
29
30
31
32
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
33
        drop_ratio (float): The probability of dropping point colors.
34
35
36
            Defaults to 0.2.
    """

ZCMax's avatar
ZCMax committed
37
    def __init__(self, drop_ratio: float = 0.2) -> None:
38
39
40
41
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

ZCMax's avatar
ZCMax committed
42
    def transform(self, input_dict: dict) -> dict:
43
44
45
46
47
48
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
49
50
            dict: Results after color dropping, 'points' key is updated
            in the result dict.
51
52
53
54
55
56
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

57
58
59
60
61
62
63
        # this if-expression is a bit strange
        # `RandomDropPointsColor` is used in training 3D segmentor PAConv
        # we discovered in our experiments that, using
        # `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to
        # better results than using `if np.random.rand() < self.drop_ratio`
        # so we keep this hack in our codebase
        if np.random.rand() > 1.0 - self.drop_ratio:
64
65
66
            points.color = points.color * 0.0
        return input_dict

67
    def __repr__(self) -> str:
68
69
70
71
72
73
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


74
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
75
76
77
78
79
80
81
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

jshilong's avatar
jshilong committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
100
    Args:
101
        sync_2d (bool): Whether to apply flip according to the 2D
zhangwenwei's avatar
zhangwenwei committed
102
103
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
104
            to that of 2D images. Defaults to True.
105
        flip_ratio_bev_horizontal (float): The flipping probability
liyinhao's avatar
liyinhao committed
106
            in horizontal direction. Defaults to 0.0.
107
        flip_ratio_bev_vertical (float): The flipping probability
liyinhao's avatar
liyinhao committed
108
            in vertical direction. Defaults to 0.0.
109
110
        flip_box3d (bool): Whether to flip bounding box. In most of the case,
            the box should be fliped. In cam-based bev detection, this is set
111
112
            to False, since the flip of 2D images does not influence the 3D
            box. Defaults to True.
zhangwenwei's avatar
zhangwenwei committed
113
114
    """

wuyuefeng's avatar
wuyuefeng committed
115
    def __init__(self,
jshilong's avatar
jshilong committed
116
117
118
                 sync_2d: bool = True,
                 flip_ratio_bev_horizontal: float = 0.0,
                 flip_ratio_bev_vertical: float = 0.0,
119
                 flip_box3d: bool = True,
jshilong's avatar
jshilong committed
120
121
122
123
                 **kwargs) -> None:
        # `flip_ratio_bev_horizontal` is equal to
        # for flip prob of 2d image when
        # `sync_2d` is True
wuyuefeng's avatar
wuyuefeng committed
124
        super(RandomFlip3D, self).__init__(
jshilong's avatar
jshilong committed
125
            prob=flip_ratio_bev_horizontal, direction='horizontal', **kwargs)
zhangwenwei's avatar
zhangwenwei committed
126
        self.sync_2d = sync_2d
jshilong's avatar
jshilong committed
127
        self.flip_ratio_bev_horizontal = flip_ratio_bev_horizontal
wuyuefeng's avatar
wuyuefeng committed
128
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
129
        self.flip_box3d = flip_box3d
wuyuefeng's avatar
wuyuefeng committed
130
131
132
133
134
135
136
137
138
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

jshilong's avatar
jshilong committed
139
140
141
    def random_flip_data_3d(self,
                            input_dict: dict,
                            direction: str = 'horizontal') -> None:
142
143
        """Flip 3D data randomly.

jshilong's avatar
jshilong committed
144
145
146
147
148
149
150
        `random_flip_data_3d` should take these situations into consideration:

        - 1. LIDAR-based 3d detection
        - 2. LIDAR-based 3d segmentation
        - 3. vision-only detection
        - 4. multi-modality 3d detection.

151
152
        Args:
            input_dict (dict): Result dict from loading pipeline.
153
            direction (str): Flip direction. Defaults to 'horizontal'.
154
155

        Returns:
156
            dict: Flipped results, 'points', 'bbox3d_fields' keys are
157
            updated in the result dict.
158
        """
wuyuefeng's avatar
wuyuefeng committed
159
        assert direction in ['horizontal', 'vertical']
160
161
162
163
164
165
166
167
        if self.flip_box3d:
            if 'gt_bboxes_3d' in input_dict:
                if 'points' in input_dict:
                    input_dict['points'] = input_dict['gt_bboxes_3d'].flip(
                        direction, points=input_dict['points'])
                else:
                    # vision-only detection
                    input_dict['gt_bboxes_3d'].flip(direction)
168
            else:
169
                input_dict['points'].flip(direction)
jshilong's avatar
jshilong committed
170
171

        if 'centers_2d' in input_dict:
172
173
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
174
            w = input_dict['img_shape'][1]
jshilong's avatar
jshilong committed
175
176
            input_dict['centers_2d'][..., 0] = \
                w - input_dict['centers_2d'][..., 0]
177
178
            # need to modify the horizontal position of camera center
            # along u-axis in the image (flip like centers2d)
179
            # ['cam2img'][0][2] = c_u
180
181
            # see more details and examples at
            # https://github.com/open-mmlab/mmdetection3d/pull/744
182
            input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2]
zhangwenwei's avatar
zhangwenwei committed
183

184
185
186
187
188
189
190
191
192
193
    def _flip_on_direction(self, results: dict) -> None:
        """Function to flip images, bounding boxes, semantic segmentation map
        and keypoints.

        Add the override feature that if 'flip' is already in results, use it
        to do the augmentation.
        """
        if 'flip' not in results:
            cur_dir = self._choose_direction()
        else:
194
195
196
197
198
199
200
201
202
            # `flip_direction` works only when `flip` is True.
            # For example, in `MultiScaleFlipAug3D`, `flip_direction` is
            # 'horizontal' but `flip` is False.
            if results['flip']:
                assert 'flip_direction' in results, 'flip and flip_direction '
                'must exist simultaneously'
                cur_dir = results['flip_direction']
            else:
                cur_dir = None
203
204
205
206
207
208
209
210
        if cur_dir is None:
            results['flip'] = False
            results['flip_direction'] = None
        else:
            results['flip'] = True
            results['flip_direction'] = cur_dir
            self._flip(results)

jshilong's avatar
jshilong committed
211
    def transform(self, input_dict: dict) -> dict:
212
        """Call function to flip points, values in the ``bbox3d_fields`` and
213
214
215
216
217
218
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
219
            dict: Flipped results, 'flip', 'flip_direction',
220
221
            'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added
            into result dict.
222
        """
223
        # flip 2D image and its annotations
jshilong's avatar
jshilong committed
224
225
        if 'img' in input_dict:
            super(RandomFlip3D, self).transform(input_dict)
zhangwenwei's avatar
zhangwenwei committed
226

jshilong's avatar
jshilong committed
227
        if self.sync_2d and 'img' in input_dict:
wuyuefeng's avatar
wuyuefeng committed
228
229
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
230
        else:
wuyuefeng's avatar
wuyuefeng committed
231
232
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
jshilong's avatar
jshilong committed
233
                ) < self.flip_ratio_bev_horizontal else False
wuyuefeng's avatar
wuyuefeng committed
234
235
236
237
238
239
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

240
241
242
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
243
244
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
245
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
246
247
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
248
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
249
250
        return input_dict

251
    def __repr__(self) -> str:
252
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
253
        repr_str = self.__class__.__name__
254
        repr_str += f'(sync_2d={self.sync_2d},'
255
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
256
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
257

zhangwenwei's avatar
zhangwenwei committed
258

259
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
260
class RandomJitterPoints(BaseTransform):
261
262
    """Randomly jitter point coordinates.

263
    Different from the global translation in ``GlobalRotScaleTrans``, here we
264
    apply different noises to each point in a scene.
265
266
267

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
268
269
            This applies random noise to all points in a 3D scene, which is
            sampled from a gaussian distribution whose standard deviation is
270
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
271
        clip_range (list[float]): Clip the randomly generated jitter
272
273
274
275
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
276
        This transform should only be used in point cloud segmentation tasks
277
        because we don't transform ground-truth bboxes accordingly.
278
279
280
281
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
282
283
                 jitter_std: List[float] = [0.01, 0.01, 0.01],
                 clip_range: List[float] = [-0.05, 0.05]) -> None:
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

ZCMax's avatar
ZCMax committed
298
    def transform(self, input_dict: dict) -> dict:
299
300
301
302
303
304
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
305
            dict: Results after adding noise to each point,
306
            'points' key is updated in the result dict.
307
308
309
310
311
312
313
314
315
316
317
318
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

319
    def __repr__(self) -> str:
320
321
322
323
324
325
326
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


327
328
@TRANSFORMS.register_module()
class ObjectSample(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
329
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
330

331
332
333
334
335
336
337
338
339
340
    Required Keys:

    - points
    - ann_info
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Modified Keys:
341

342
343
344
345
346
347
348
349
350
351
    - points
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Added Keys:

    - plane (optional)

zhangwenwei's avatar
zhangwenwei committed
352
353
    Args:
        db_sampler (dict): Config dict of the database sampler.
354
        sample_2d (bool): Whether to also paste 2D image patch to the images.
zhangwenwei's avatar
zhangwenwei committed
355
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
356
            Defaults to False.
357
        use_ground_plane (bool): Whether to use ground plane to adjust the
358
            3D labels. Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
359
    """
zhangwenwei's avatar
zhangwenwei committed
360

361
362
363
    def __init__(self,
                 db_sampler: dict,
                 sample_2d: bool = False,
364
                 use_ground_plane: bool = False) -> None:
zhangwenwei's avatar
zhangwenwei committed
365
366
367
368
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
369
        self.db_sampler = TRANSFORMS.build(db_sampler)
370
        self.use_ground_plane = use_ground_plane
371
        self.disabled = False
zhangwenwei's avatar
zhangwenwei committed
372
373

    @staticmethod
374
375
    def remove_points_in_boxes(points: BasePoints,
                               boxes: np.ndarray) -> np.ndarray:
376
377
378
        """Remove the points in the sampled bounding boxes.

        Args:
379
            points (:obj:`BasePoints`): Input point cloud array.
380
381
382
383
384
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
385
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
386
387
388
        points = points[np.logical_not(masks.any(-1))]
        return points

389
390
    def transform(self, input_dict: dict) -> dict:
        """Transform function to sample ground truth objects to the data.
391
392
393
394
395

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
396
            dict: Results after object sampling augmentation,
397
398
            'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated
            in the result dict.
399
        """
400
401
402
        if self.disabled:
            return input_dict

zhangwenwei's avatar
zhangwenwei committed
403
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
404
405
        gt_labels_3d = input_dict['gt_labels_3d']

ChaimZhu's avatar
ChaimZhu committed
406
407
        if self.use_ground_plane:
            ground_plane = input_dict.get('plane', None)
408
409
            assert ground_plane is not None, '`use_ground_plane` is True ' \
                                             'but find plane is None'
410
411
        else:
            ground_plane = None
zhangwenwei's avatar
zhangwenwei committed
412
413
414
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
415
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
416
417
418
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
419
420
421
422
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
423
424
        else:
            sampled_dict = self.db_sampler.sample_all(
425
426
427
428
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                img=None,
                ground_plane=ground_plane)
zhangwenwei's avatar
zhangwenwei committed
429
430
431
432

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
433
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
434

zhangwenwei's avatar
zhangwenwei committed
435
436
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
437
438
439
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
440

zhangwenwei's avatar
zhangwenwei committed
441
442
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
443
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
444
445
446
447
448

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
449

zhangwenwei's avatar
zhangwenwei committed
450
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
451
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
452
453

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
WRH's avatar
WRH committed
454
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.int64)
zhangwenwei's avatar
zhangwenwei committed
455
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
456

zhangwenwei's avatar
zhangwenwei committed
457
458
        return input_dict

459
    def __repr__(self) -> str:
460
        """str: Return a string that describes the module."""
461
        repr_str = self.__class__.__name__
462
        repr_str += f'(db_sampler={self.db_sampler},'
463
        repr_str += f' sample_2d={self.sample_2d},'
464
        repr_str += f' use_ground_plane={self.use_ground_plane})'
465
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
466
467


468
469
@TRANSFORMS.register_module()
class ObjectNoise(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
470
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
471

472
473
474
475
476
477
478
479
480
481
    Required Keys:

    - points
    - gt_bboxes_3d

    Modified Keys:

    - points
    - gt_bboxes_3d

zhangwenwei's avatar
zhangwenwei committed
482
    Args:
483
        translation_std (list[float]): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
484
485
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
486
        global_rot_range (list[float]): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
487
            Defaults to [0.0, 0.0].
488
        rot_range (list[float]): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
489
            Defaults to [-0.15707963267, 0.15707963267].
490
491
        num_try (int): Number of times to try if the noise applied is invalid.
            Defaults to 100.
zhangwenwei's avatar
zhangwenwei committed
492
    """
zhangwenwei's avatar
zhangwenwei committed
493
494

    def __init__(self,
495
496
497
498
                 translation_std: List[float] = [0.25, 0.25, 0.25],
                 global_rot_range: List[float] = [0.0, 0.0],
                 rot_range: List[float] = [-0.15707963267, 0.15707963267],
                 num_try: int = 100) -> None:
zhangwenwei's avatar
zhangwenwei committed
499
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
500
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
501
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
502
503
        self.num_try = num_try

504
505
    def transform(self, input_dict: dict) -> dict:
        """Transform function to apply noise to each ground truth in the scene.
506
507
508
509
510

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
511
            dict: Results after adding noise to each object,
512
            'points', 'gt_bboxes_3d' keys are updated in the result dict.
513
        """
zhangwenwei's avatar
zhangwenwei committed
514
515
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
516

517
        # TODO: this is inplace operation
518
        numpy_box = gt_bboxes_3d.tensor.numpy()
519
520
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
521
        noise_per_object_v3_(
522
            numpy_box,
523
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
524
525
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
526
527
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
528
529

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
530
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
531
532
        return input_dict

533
    def __repr__(self) -> str:
534
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
535
        repr_str = self.__class__.__name__
536
537
538
539
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
540
541
542
        return repr_str


543
@TRANSFORMS.register_module()
544
class GlobalAlignment(BaseTransform):
545
546
547
548
549
550
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
551
        We do not record the applied rotation and translation as in
552
553
        GlobalRotScaleTrans. Because usually, we do not need to reverse
        the alignment step.
554
        For example, ScanNet 3D detection task uses aligned ground-truth
555
        bounding boxes for evaluation.
556
557
    """

558
    def __init__(self, rotation_axis: int) -> None:
559
560
        self.rotation_axis = rotation_axis

561
    def _trans_points(self, results: dict, trans_factor: np.ndarray) -> None:
562
563
564
565
566
567
568
569
570
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
571
        results['points'].translate(trans_factor)
572

573
    def _rot_points(self, results: dict, rot_mat: np.ndarray) -> None:
574
575
576
577
578
579
580
581
582
583
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
584
        results['points'].rotate(rot_mat.T)
585

586
    def _check_rot_mat(self, rot_mat: np.ndarray) -> None:
587
588
589
590
591
592
593
594
595
596
597
598
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

599
    def transform(self, results: dict) -> dict:
600
601
602
603
604
605
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
606
            dict: Results after global alignment, 'points' and keys in
607
            input_dict['bbox3d_fields'] are updated in the result dict.
608
        """
609
        assert 'axis_align_matrix' in results, \
610
611
            'axis_align_matrix is not provided in GlobalAlignment'

612
        axis_align_matrix = results['axis_align_matrix']
613
614
615
616
617
618
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
619
620
        self._rot_points(results, rot_mat)
        self._trans_points(results, trans_vec)
621

622
        return results
623

624
    def __repr__(self) -> str:
625
        """str: Return a string that describes the module."""
626
627
628
629
630
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


631
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
632
class GlobalRotScaleTrans(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
633
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
634

jshilong's avatar
jshilong committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
653
    Args:
654
        rot_range (list[float]): Range of rotation angle.
liyinhao's avatar
liyinhao committed
655
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
656
        scale_ratio_range (list[float]): Range of scale ratio.
liyinhao's avatar
liyinhao committed
657
            Defaults to [0.95, 1.05].
658
        translation_std (list[float]): The standard deviation of
659
            translation noise applied to a scene, which
zhangwenwei's avatar
zhangwenwei committed
660
            is sampled from a gaussian distribution whose standard deviation
661
662
            is set by ``translation_std``. Defaults to [0, 0, 0].
        shift_height (bool): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
663
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
664
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
665
    """
zhangwenwei's avatar
zhangwenwei committed
666
667

    def __init__(self,
jshilong's avatar
jshilong committed
668
669
670
671
                 rot_range: List[float] = [-0.78539816, 0.78539816],
                 scale_ratio_range: List[float] = [0.95, 1.05],
                 translation_std: List[int] = [0, 0, 0],
                 shift_height: bool = False) -> None:
672
673
674
675
676
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
677
        self.rot_range = rot_range
678
679
680

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
jshilong's avatar
jshilong committed
681

zhangwenwei's avatar
zhangwenwei committed
682
        self.scale_ratio_range = scale_ratio_range
683
684
685
686
687
688
689

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
690
691
        assert all([std >= 0 for std in translation_std]), \
            'translation_std should be positive'
zhangwenwei's avatar
zhangwenwei committed
692
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
693
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
694

jshilong's avatar
jshilong committed
695
    def _trans_bbox_points(self, input_dict: dict) -> None:
696
697
698
699
700
701
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
702
            dict: Results after translation, 'points', 'pcd_trans'
703
            and `gt_bboxes_3d` is updated in the result dict.
704
        """
705
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
706
707
        trans_factor = np.random.normal(scale=translation_std, size=3).T

708
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
709
        input_dict['pcd_trans'] = trans_factor
jshilong's avatar
jshilong committed
710
711
        if 'gt_bboxes_3d' in input_dict:
            input_dict['gt_bboxes_3d'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
712

jshilong's avatar
jshilong committed
713
    def _rot_bbox_points(self, input_dict: dict) -> None:
714
715
716
717
718
719
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
720
            dict: Results after rotation, 'points', 'pcd_rotation'
721
            and `gt_bboxes_3d` is updated in the result dict.
722
        """
zhangwenwei's avatar
zhangwenwei committed
723
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
724
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
725

jshilong's avatar
jshilong committed
726
727
728
729
730
731
732
733
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            # rotate points with bboxes
            points, rot_mat_T = input_dict['gt_bboxes_3d'].rotate(
                noise_rotation, input_dict['points'])
            input_dict['points'] = points
        else:
            # if no bbox in input_dict, only rotate points
734
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
jshilong's avatar
jshilong committed
735
736
737
738
739

        input_dict['pcd_rotation'] = rot_mat_T
        input_dict['pcd_rotation_angle'] = noise_rotation

    def _scale_bbox_points(self, input_dict: dict) -> None:
740
741
742
743
744
745
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
746
            dict: Results after scaling, 'points' and
747
            `gt_bboxes_3d` is updated in the result dict.
748
        """
zhangwenwei's avatar
zhangwenwei committed
749
        scale = input_dict['pcd_scale_factor']
750
751
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
752
        if self.shift_height:
753
754
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
755
756
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
757

jshilong's avatar
jshilong committed
758
759
760
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            input_dict['gt_bboxes_3d'].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
761

jshilong's avatar
jshilong committed
762
    def _random_scale(self, input_dict: dict) -> None:
763
764
765
766
767
768
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
769
770
            dict: Results after scaling, 'pcd_scale_factor'
            are updated in the result dict.
771
        """
zhangwenwei's avatar
zhangwenwei committed
772
773
774
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
775

jshilong's avatar
jshilong committed
776
    def transform(self, input_dict: dict) -> dict:
777
        """Private function to rotate, scale and translate bounding boxes and
778
779
780
781
782
783
784
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
785
            'pcd_scale_factor', 'pcd_trans' and `gt_bboxes_3d` are updated
jshilong's avatar
jshilong committed
786
            in the result dict.
787
        """
788
789
790
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
791
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
792

zhangwenwei's avatar
zhangwenwei committed
793
794
795
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
796

zhangwenwei's avatar
zhangwenwei committed
797
        self._trans_bbox_points(input_dict)
798
799

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
800
801
        return input_dict

802
    def __repr__(self) -> str:
803
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
804
        repr_str = self.__class__.__name__
805
806
807
808
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
809
810
811
        return repr_str


812
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
813
class PointShuffle(BaseTransform):
814
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
815

ZCMax's avatar
ZCMax committed
816
    def transform(self, input_dict: dict) -> dict:
817
818
819
820
821
822
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
823
            dict: Results after filtering, 'points', 'pts_instance_mask'
824
            and 'pts_semantic_mask' keys are updated in the result dict.
825
        """
826
827
828
829
830
831
832
833
834
835
836
837
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
838
839
        return input_dict

840
    def __repr__(self) -> str:
841
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
842
843
844
        return self.__class__.__name__


845
@TRANSFORMS.register_module()
846
class ObjectRangeFilter(BaseTransform):
847
848
    """Filter objects by the range.

849
850
851
852
853
854
855
856
    Required Keys:

    - gt_bboxes_3d

    Modified Keys:

    - gt_bboxes_3d

857
858
859
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
860

861
    def __init__(self, point_cloud_range: List[float]) -> None:
zhangwenwei's avatar
zhangwenwei committed
862
863
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)

864
865
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by the range.
866
867
868
869
870

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
871
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
872
            keys are updated in the result dict.
873
        """
874
875
876
877
878
879
880
        # Check points instance type and initialise bev_range
        if isinstance(input_dict['gt_bboxes_3d'],
                      (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
            bev_range = self.pcd_range[[0, 1, 3, 4]]
        elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
            bev_range = self.pcd_range[[0, 2, 3, 5]]

zhangwenwei's avatar
zhangwenwei committed
881
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
882
        gt_labels_3d = input_dict['gt_labels_3d']
883
        mask = gt_bboxes_3d.in_range_bev(bev_range)
zhangwenwei's avatar
zhangwenwei committed
884
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
885
886
887
888
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
889
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(bool)]
zhangwenwei's avatar
zhangwenwei committed
890
891

        # limit rad to [-pi, pi]
892
893
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
894
895
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
896
897
        return input_dict

898
    def __repr__(self) -> str:
899
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
900
        repr_str = self.__class__.__name__
901
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
902
903
904
        return repr_str


905
@TRANSFORMS.register_module()
906
class PointsRangeFilter(BaseTransform):
907
908
    """Filter points by the range.

909
910
911
912
913
914
915
916
917
918
    Required Keys:

    - points
    - pts_instance_mask (optional)

    Modified Keys:

    - points
    - pts_instance_mask (optional)

919
920
921
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
922

923
    def __init__(self, point_cloud_range: List[float]) -> None:
924
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
925

926
927
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter points by the range.
928
929
930
931
932

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
933
            dict: Results after filtering, 'points', 'pts_instance_mask'
934
            and 'pts_semantic_mask' keys are updated in the result dict.
935
        """
zhangwenwei's avatar
zhangwenwei committed
936
        points = input_dict['points']
937
938
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
939
        input_dict['points'] = clean_points
940
941
942
943
944
945
946
947
948
949
950
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
951
952
        return input_dict

953
    def __repr__(self) -> str:
954
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
955
        repr_str = self.__class__.__name__
956
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
957
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
958
959


960
@TRANSFORMS.register_module()
961
class ObjectNameFilter(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
962
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
963

964
965
966
967
968
969
970
971
    Required Keys:

    - gt_labels_3d

    Modified Keys:

    - gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
972
    Args:
liyinhao's avatar
liyinhao committed
973
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
974
975
    """

976
    def __init__(self, classes: List[str]) -> None:
zhangwenwei's avatar
zhangwenwei committed
977
978
979
        self.classes = classes
        self.labels = list(range(len(self.classes)))

980
981
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by their names.
982
983
984
985
986

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
987
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
988
            keys are updated in the result dict.
989
        """
zhangwenwei's avatar
zhangwenwei committed
990
991
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
992
                                  dtype=bool)
zhangwenwei's avatar
zhangwenwei committed
993
994
995
996
997
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

998
    def __repr__(self) -> str:
999
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
1000
1001
1002
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
1003
1004


1005
1006
@TRANSFORMS.register_module()
class PointSample(BaseTransform):
1007
    """Point sample.
wuyuefeng's avatar
wuyuefeng committed
1008
1009
1010

    Sampling data to a certain number.

1011
    Required Keys:
1012

1013
1014
1015
1016
1017
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

    Modified Keys:
1018

1019
1020
1021
1022
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

wuyuefeng's avatar
wuyuefeng committed
1023
1024
    Args:
        num_points (int): Number of points to be sampled.
1025
        sample_range (float, optional): The range where to sample points.
1026
1027
            If not None, the points with depth larger than `sample_range` are
            prior to be sampled. Defaults to None.
1028
1029
        replace (bool): Whether the sampling is with or without replacement.
            Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
1030
1031
    """

1032
1033
    def __init__(self,
                 num_points: int,
1034
1035
                 sample_range: Optional[float] = None,
                 replace: bool = False) -> None:
wuyuefeng's avatar
wuyuefeng committed
1036
        self.num_points = num_points
1037
1038
1039
        self.sample_range = sample_range
        self.replace = replace

1040
1041
1042
1043
1044
1045
1046
1047
    def _points_random_sampling(
        self,
        points: BasePoints,
        num_samples: int,
        sample_range: Optional[float] = None,
        replace: bool = False,
        return_choices: bool = False
    ) -> Union[Tuple[BasePoints, np.ndarray], BasePoints]:
wuyuefeng's avatar
wuyuefeng committed
1048
1049
1050
1051
1052
        """Points random sampling.

        Sample points to a certain number.

        Args:
1053
            points (:obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
1054
            num_samples (int): Number of samples to be sampled.
1055
            sample_range (float, optional): Indicating the range where the
1056
                points will be sampled. Defaults to None.
1057
            replace (bool): Sampling with or without replacement.
1058
                Defaults to False.
1059
            return_choices (bool): Whether return choice. Defaults to False.
1060

wuyuefeng's avatar
wuyuefeng committed
1061
        Returns:
1062
1063
1064
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:

                - points (:obj:`BasePoints`): 3D Points.
1065
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
1066
        """
1067
        if not replace:
wuyuefeng's avatar
wuyuefeng committed
1068
            replace = (points.shape[0] < num_samples)
1069
1070
1071
        point_range = range(len(points))
        if sample_range is not None and not replace:
            # Only sampling the near points when len(points) >= num_samples
1072
            dist = np.linalg.norm(points.coord.numpy(), axis=1)
1073
1074
            far_inds = np.where(dist >= sample_range)[0]
            near_inds = np.where(dist < sample_range)[0]
1075
1076
1077
1078
            # in case there are too many far points
            if len(far_inds) > num_samples:
                far_inds = np.random.choice(
                    far_inds, num_samples, replace=False)
1079
1080
1081
1082
1083
1084
1085
            point_range = near_inds
            num_samples -= len(far_inds)
        choices = np.random.choice(point_range, num_samples, replace=replace)
        if sample_range is not None and not replace:
            choices = np.concatenate((far_inds, choices))
            # Shuffle points after sampling
            np.random.shuffle(choices)
wuyuefeng's avatar
wuyuefeng committed
1086
1087
1088
1089
1090
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

1091
    def transform(self, input_dict: dict) -> dict:
1092
        """Transform function to sample points to in indoor scenes.
1093
1094
1095

        Args:
            input_dict (dict): Result dict from loading pipeline.
1096

1097
        Returns:
1098
            dict: Results after sampling, 'points', 'pts_instance_mask'
1099
            and 'pts_semantic_mask' keys are updated in the result dict.
1100
        """
1101
        points = input_dict['points']
1102
1103
1104
1105
1106
1107
        points, choices = self._points_random_sampling(
            points,
            self.num_points,
            self.sample_range,
            self.replace,
            return_choices=True)
1108
        input_dict['points'] = points
1109

1110
1111
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
wuyuefeng's avatar
wuyuefeng committed
1112

1113
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
1114
            pts_instance_mask = pts_instance_mask[choices]
1115
            input_dict['pts_instance_mask'] = pts_instance_mask
1116
1117
1118

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
1119
            input_dict['pts_semantic_mask'] = pts_semantic_mask
wuyuefeng's avatar
wuyuefeng committed
1120

1121
        return input_dict
wuyuefeng's avatar
wuyuefeng committed
1122

1123
    def __repr__(self) -> str:
1124
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
1125
        repr_str = self.__class__.__name__
1126
        repr_str += f'(num_points={self.num_points},'
1127
1128
        repr_str += f' sample_range={self.sample_range},'
        repr_str += f' replace={self.replace})'
1129

1130
1131
1132
        return repr_str


1133
@TRANSFORMS.register_module()
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
class IndoorPointSample(PointSample):
    """Indoor point sample.

    Sampling data to a certain number.
    NOTE: IndoorPointSample is deprecated in favor of PointSample

    Args:
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, *args, **kwargs):
        warnings.warn(
            'IndoorPointSample is deprecated in favor of PointSample')
        super(IndoorPointSample, self).__init__(*args, **kwargs)


1150
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1151
class IndoorPatchPointSample(BaseTransform):
1152
1153
1154
1155
1156
1157
1158
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
1159
        block_size (float): Size of a block to sample points from.
1160
1161
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
1162
1163
1164
            This parameter is unused in `IndoorPatchPointSample` and thus has
            been deprecated. We plan to remove it in the future.
            Defaults to None.
1165
1166
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
1167
            If not None, will be used as a patch selection criterion.
1168
            Defaults to None.
1169
        use_normalized_coord (bool): Whether to use normalized xyz as
1170
            additional features. Defaults to False.
1171
1172
1173
        num_try (int): Number of times to try if the patch selected is invalid.
            Defaults to 10.
        enlarge_size (float): Enlarge the sampled patch to
1174
            [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as
1175
            an augmentation. If None, set it as 0. Defaults to 0.2.
1176
        min_unique_num (int, optional): Minimum number of unique points
1177
1178
            the sampled patch should contain. If None, use PointNet++'s method
            to judge uniqueness. Defaults to None.
1179
        eps (float): A value added to patch boundary to guarantee
1180
            points coverage. Defaults to 1e-2.
1181
1182
1183

    Note:
        This transform should only be used in the training process of point
1184
1185
1186
        cloud segmentation tasks. For the sliding patch generation and
        inference process in testing, please refer to the `slide_inference`
        function of `EncoderDecoder3D` class.
1187
1188
1189
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
1190
1191
1192
1193
1194
1195
1196
1197
1198
                 num_points: int,
                 block_size: float = 1.5,
                 sample_rate: Optional[float] = None,
                 ignore_index: Optional[int] = None,
                 use_normalized_coord: bool = False,
                 num_try: int = 10,
                 enlarge_size: float = 0.2,
                 min_unique_num: Optional[int] = None,
                 eps: float = 1e-2) -> None:
1199
1200
1201
1202
1203
        self.num_points = num_points
        self.block_size = block_size
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try
1204
        self.enlarge_size = enlarge_size if enlarge_size is not None else 0.0
1205
        self.min_unique_num = min_unique_num
1206
        self.eps = eps
1207
1208
1209
1210
1211

        if sample_rate is not None:
            warnings.warn(
                "'sample_rate' has been deprecated and will be removed in "
                'the future. Please remove them from your code.')
1212

ZCMax's avatar
ZCMax committed
1213
1214
1215
1216
    def _input_generation(self, coords: np.ndarray, patch_center: np.ndarray,
                          coord_max: np.ndarray, attributes: np.ndarray,
                          attribute_dims: dict,
                          point_type: type) -> BasePoints:
1217
1218
        """Generating model input.

1219
        Generate input by subtracting patch center and adding additional
1220
1221
1222
1223
1224
1225
1226
1227
1228
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
1229
            point_type (type): class of input points inherited from BasePoints.
1230
1231

        Returns:
1232
            :obj:`BasePoints`: The generated input data.
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

1256
    def _patch_points_sampling(
1257
1258
            self, points: BasePoints,
            sem_mask: np.ndarray) -> Tuple[BasePoints, np.ndarray]:
1259
1260
1261
1262
1263
1264
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
1265
            points (:obj:`BasePoints`): 3D Points.
1266
1267
1268
            sem_mask (np.ndarray): semantic segmentation mask for input points.

        Returns:
1269
            tuple[:obj:`BasePoints`, np.ndarray]:
1270

1271
                - points (:obj:`BasePoints`): 3D Points.
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

1282
        for _ in range(self.num_try):
1283
1284
1285
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

1286
1287
            # boundary of a patch, which would be enlarged by
            # `self.enlarge_size` as an augmentation
1288
1289
1290
1291
1292
1293
1294
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
1295
1296
                (coords >= (cur_min - self.enlarge_size)) *
                (coords <= (cur_max + self.enlarge_size)),
1297
1298
1299
1300
1301
1302
1303
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]
1304
            point_idxs = np.where(cur_choice)[0]
1305
            mask = np.sum(
1306
1307
                (cur_coords >= (cur_min - self.eps)) * (cur_coords <=
                                                        (cur_max + self.eps)),
1308
                axis=1) == 3
1309

1310
1311
            # two criteria for patch sampling, adopted from PointNet++
            # 1. selected patch should contain enough unique points
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
            if self.min_unique_num is None:
                # use PointNet++'s method as default
                # [31, 31, 62] are just some big values used to transform
                # coords from 3d array to 1d and then check their uniqueness
                # this is used in all the ScanNet code following PointNet++
                vidx = np.ceil(
                    (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) *
                    np.array([31.0, 31.0, 62.0]))
                vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                                 vidx[:, 2])
                flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02
            else:
1324
                # if `min_unique_num` is provided, directly compare with it
1325
                flag1 = mask.sum() >= self.min_unique_num
1326

1327
            # 2. selected patch should contain enough annotated points
1328
1329
1330
1331
1332
1333
1334
1335
1336
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
        # sample idx to `self.num_points`
        if point_idxs.size >= self.num_points:
            # no duplicate in sub-sampling
            choices = np.random.choice(
                point_idxs, self.num_points, replace=False)
        else:
            # do not use random choice here to avoid some points not counted
            dup = np.random.choice(point_idxs.size,
                                   self.num_points - point_idxs.size)
            idx_dup = np.concatenate(
                [np.arange(point_idxs.size),
                 np.array(dup)], 0)
            choices = point_idxs[idx_dup]
1350
1351
1352
1353
1354
1355
1356
1357

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

ZCMax's avatar
ZCMax committed
1358
    def transform(self, input_dict: dict) -> dict:
1359
1360
1361
1362
1363
1364
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1365
            dict: Results after sampling, 'points', 'pts_instance_mask'
1366
            and 'pts_semantic_mask' keys are updated in the result dict.
1367
        """
ZCMax's avatar
ZCMax committed
1368
        points = input_dict['points']
1369

ZCMax's avatar
ZCMax committed
1370
        assert 'pts_semantic_mask' in input_dict.keys(), \
1371
            'semantic mask should be provided in training and evaluation'
ZCMax's avatar
ZCMax committed
1372
        pts_semantic_mask = input_dict['pts_semantic_mask']
1373
1374
1375
1376

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

ZCMax's avatar
ZCMax committed
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
        input_dict['points'] = points
        input_dict['pts_semantic_mask'] = pts_semantic_mask[choices]

        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in input_dict:
            input_dict['eval_ann_info']['pts_semantic_mask'] = \
                pts_semantic_mask[choices]

        pts_instance_mask = input_dict.get('pts_instance_mask', None)

1387
        if pts_instance_mask is not None:
ZCMax's avatar
ZCMax committed
1388
1389
1390
1391
1392
            input_dict['pts_instance_mask'] = pts_instance_mask[choices]
            # 'eval_ann_info' will be passed to evaluator
            if 'eval_ann_info' in input_dict:
                input_dict['eval_ann_info']['pts_instance_mask'] = \
                    pts_instance_mask[choices]
1393

ZCMax's avatar
ZCMax committed
1394
        return input_dict
1395

1396
    def __repr__(self) -> str:
1397
1398
1399
1400
1401
1402
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
1403
1404
        repr_str += f' num_try={self.num_try},'
        repr_str += f' enlarge_size={self.enlarge_size},'
1405
1406
        repr_str += f' min_unique_num={self.min_unique_num},'
        repr_str += f' eps={self.eps})'
wuyuefeng's avatar
wuyuefeng committed
1407
        return repr_str
1408
1409


1410
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1411
class BackgroundPointsFilter(BaseTransform):
1412
1413
1414
    """Filter background points near the bounding box.

    Args:
1415
        bbox_enlarge_range (tuple[float] | float): Bbox enlarge range.
1416
1417
    """

ZCMax's avatar
ZCMax committed
1418
    def __init__(self, bbox_enlarge_range: Union[Tuple[float], float]) -> None:
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

ZCMax's avatar
ZCMax committed
1429
    def transform(self, input_dict: dict) -> dict:
1430
1431
1432
1433
1434
1435
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1436
            dict: Results after filtering, 'points', 'pts_instance_mask'
1437
            and 'pts_semantic_mask' keys are updated in the result dict.
1438
1439
1440
1441
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

xiliu8006's avatar
xiliu8006 committed
1442
1443
1444
1445
        # avoid groundtruth being modified
        gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy()

1446
1447
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
xiliu8006's avatar
xiliu8006 committed
1448
        points_numpy = points.tensor.clone().numpy()
1449
1450
        foreground_masks = box_np_ops.points_in_rbbox(
            points_numpy, gt_bboxes_3d_np, origin=(0.5, 0.5, 0.5))
1451
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1452
            points_numpy, enlarged_gt_bboxes_3d, origin=(0.5, 0.5, 0.5))
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

1468
    def __repr__(self) -> str:
1469
1470
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1471
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1472
        return repr_str
1473
1474


1475
@TRANSFORMS.register_module()
1476
class VoxelBasedPointSampler(BaseTransform):
1477
1478
1479
1480
1481
1482
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
1483
1484
        prev_sweep_cfg (dict, optional): Config for sampling previous points.
            Defaults to None.
1485
        time_dim (int): Index that indicate the time dimension
1486
            for input points. Defaults to 3.
1487
1488
    """

1489
1490
1491
1492
    def __init__(self,
                 cur_sweep_cfg: dict,
                 prev_sweep_cfg: Optional[dict] = None,
                 time_dim: int = 3) -> None:
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

1505
    def _sample_points(self, points: np.ndarray, sampler: VoxelGenerator,
1506
                       point_dim: int) -> np.ndarray:
1507
1508
1509
1510
1511
1512
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
1513
            point_dim (int): The dimension of each points.
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

1532
    def transform(self, results: dict) -> dict:
1533
1534
1535
1536
1537
1538
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1539
            dict: Results after sampling, 'points', 'pts_instance_mask'
1540
            and 'pts_semantic_mask' keys are updated in the result dict.
1541
1542
1543
1544
1545
1546
1547
1548
1549
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1550
1551
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1552
1553
1554
1555
1556
1557
1558
1559
1560
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1561
        points_numpy = np.concatenate(extra_channel, axis=-1)
1562
1563
1564
1565
1566

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1567
1568
1569
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1570
1571
1572
1573
1574
1575
1576
1577
1578
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1579
                                               points_numpy.shape[1])
1580
1581
1582
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1583
                                                     points_numpy.shape[1])
1584

1585
1586
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1587
        else:
1588
            points_numpy = cur_sweep_points
1589
1590

        if self.cur_voxel_generator._max_num_points == 1:
1591
1592
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1593

1594
        # Restore the corresponding seg and mask fields
1595
        for key, dim_index in map_fields2dim:
1596
            results[key] = points_numpy[..., dim_index]
1597
1598
1599

        return results

1600
    def __repr__(self) -> str:
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str
1620
1621


1622
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1623
class AffineResize(BaseTransform):
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
    """Get the affine transform matrices to the target size.

    Different from :class:`RandomAffine` in MMDetection, this class can
    calculate the affine transform matrices while resizing the input image
    to a fixed size. The affine transform matrices include: 1) matrix
    transforming original image to the network input image size. 2) matrix
    transforming original image to the network output feature map size.

    Args:
        img_scale (tuple): Images scales for resizing.
        down_ratio (int): The down ratio of feature map.
            Actually the arg should be >= 1.
1636
        bbox_clip_border (bool): Whether clip the objects
1637
1638
1639
            outside the border of the image. Defaults to True.
    """

ZCMax's avatar
ZCMax committed
1640
1641
1642
1643
    def __init__(self,
                 img_scale: Tuple,
                 down_ratio: int,
                 bbox_clip_border: bool = True) -> None:
1644
1645
1646
1647
1648

        self.img_scale = img_scale
        self.down_ratio = down_ratio
        self.bbox_clip_border = bbox_clip_border

ZCMax's avatar
ZCMax committed
1649
    def transform(self, results: dict) -> dict:
1650
1651
1652
1653
1654
1655
1656
        """Call function to do affine transform to input image and labels.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after affine resize, 'affine_aug', 'trans_mat'
1657
            keys are added in the result dict.
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
        """
        # The results have gone through RandomShiftScale before AffineResize
        if 'center' not in results:
            img = results['img']
            height, width = img.shape[:2]
            center = np.array([width / 2, height / 2], dtype=np.float32)
            size = np.array([width, height], dtype=np.float32)
            results['affine_aug'] = False
        else:
            # The results did not go through RandomShiftScale before
            # AffineResize
            img = results['img']
            center = results['center']
            size = results['size']

        trans_affine = self._get_transform_matrix(center, size, self.img_scale)

        img = cv2.warpAffine(img, trans_affine[:2, :], self.img_scale)

        if isinstance(self.down_ratio, tuple):
            trans_mat = [
                self._get_transform_matrix(
                    center, size,
                    (self.img_scale[0] // ratio, self.img_scale[1] // ratio))
                for ratio in self.down_ratio
            ]  # (3, 3)
        else:
            trans_mat = self._get_transform_matrix(
                center, size, (self.img_scale[0] // self.down_ratio,
                               self.img_scale[1] // self.down_ratio))

        results['img'] = img
        results['img_shape'] = img.shape
        results['pad_shape'] = img.shape
        results['trans_mat'] = trans_mat

ZCMax's avatar
ZCMax committed
1694
1695
        if 'gt_bboxes' in results:
            self._affine_bboxes(results, trans_affine)
1696

ZCMax's avatar
ZCMax committed
1697
1698
        if 'centers_2d' in results:
            centers2d = self._affine_transform(results['centers_2d'],
1699
1700
1701
1702
1703
                                               trans_affine)
            valid_index = (centers2d[:, 0] >
                           0) & (centers2d[:, 0] <
                                 self.img_scale[0]) & (centers2d[:, 1] > 0) & (
                                     centers2d[:, 1] < self.img_scale[1])
ZCMax's avatar
ZCMax committed
1704
1705
1706
1707
            results['centers_2d'] = centers2d[valid_index]

            if 'gt_bboxes' in results:
                results['gt_bboxes'] = results['gt_bboxes'][valid_index]
1708
1709
1710
                if 'gt_bboxes_labels' in results:
                    results['gt_bboxes_labels'] = results['gt_bboxes_labels'][
                        valid_index]
ZCMax's avatar
ZCMax committed
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
                if 'gt_masks' in results:
                    raise NotImplementedError(
                        'AffineResize only supports bbox.')

            if 'gt_bboxes_3d' in results:
                results['gt_bboxes_3d'].tensor = results[
                    'gt_bboxes_3d'].tensor[valid_index]
                if 'gt_labels_3d' in results:
                    results['gt_labels_3d'] = results['gt_labels_3d'][
                        valid_index]
1721
1722
1723
1724
1725

            results['depths'] = results['depths'][valid_index]

        return results

ZCMax's avatar
ZCMax committed
1726
    def _affine_bboxes(self, results: dict, matrix: np.ndarray) -> None:
1727
1728
1729
1730
1731
1732
1733
1734
1735
        """Affine transform bboxes to input image.

        Args:
            results (dict): Result dict from loading pipeline.
            matrix (np.ndarray): Matrix transforming original
                image to the network input image size.
                shape: (3, 3)
        """

ZCMax's avatar
ZCMax committed
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
        bboxes = results['gt_bboxes']
        bboxes[:, :2] = self._affine_transform(bboxes[:, :2], matrix)
        bboxes[:, 2:] = self._affine_transform(bboxes[:, 2:], matrix)
        if self.bbox_clip_border:
            bboxes[:, [0, 2]] = bboxes[:, [0, 2]].clip(0,
                                                       self.img_scale[0] - 1)
            bboxes[:, [1, 3]] = bboxes[:, [1, 3]].clip(0,
                                                       self.img_scale[1] - 1)
        results['gt_bboxes'] = bboxes

    def _affine_transform(self, points: np.ndarray,
                          matrix: np.ndarray) -> np.ndarray:
1748
        """Affine transform bbox points to input image.
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765

        Args:
            points (np.ndarray): Points to be transformed.
                shape: (N, 2)
            matrix (np.ndarray): Affine transform matrix.
                shape: (3, 3)

        Returns:
            np.ndarray: Transformed points.
        """
        num_points = points.shape[0]
        hom_points_2d = np.concatenate((points, np.ones((num_points, 1))),
                                       axis=1)
        hom_points_2d = hom_points_2d.T
        affined_points = np.matmul(matrix, hom_points_2d).T
        return affined_points[:, :2]

ZCMax's avatar
ZCMax committed
1766
1767
    def _get_transform_matrix(self, center: Tuple, scale: Tuple,
                              output_scale: Tuple[float]) -> np.ndarray:
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
        """Get affine transform matrix.

        Args:
            center (tuple): Center of current image.
            scale (tuple): Scale of current image.
            output_scale (tuple[float]): The transform target image scales.

        Returns:
            np.ndarray: Affine transform matrix.
        """
        # TODO: further add rot and shift here.
        src_w = scale[0]
        dst_w = output_scale[0]
        dst_h = output_scale[1]

        src_dir = np.array([0, src_w * -0.5])
        dst_dir = np.array([0, dst_w * -0.5])

        src = np.zeros((3, 2), dtype=np.float32)
        dst = np.zeros((3, 2), dtype=np.float32)
        src[0, :] = center
        src[1, :] = center + src_dir
        dst[0, :] = np.array([dst_w * 0.5, dst_h * 0.5])
        dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir

        src[2, :] = self._get_ref_point(src[0, :], src[1, :])
        dst[2, :] = self._get_ref_point(dst[0, :], dst[1, :])

        get_matrix = cv2.getAffineTransform(src, dst)

        matrix = np.concatenate((get_matrix, [[0., 0., 1.]]))

        return matrix.astype(np.float32)

ZCMax's avatar
ZCMax committed
1802
1803
    def _get_ref_point(self, ref_point1: np.ndarray,
                       ref_point2: np.ndarray) -> np.ndarray:
1804
        """Get reference point to calculate affine transform matrix.
1805
1806

        While using opencv to calculate the affine matrix, we need at least
1807
        three corresponding points separately on original image and target
1808
1809
1810
1811
1812
1813
        image. Here we use two points to get the the third reference point.
        """
        d = ref_point1 - ref_point2
        ref_point3 = ref_point2 + np.array([-d[1], d[0]])
        return ref_point3

1814
    def __repr__(self) -> str:
1815
        """str: Return a string that describes the module."""
1816
1817
1818
1819
1820
1821
        repr_str = self.__class__.__name__
        repr_str += f'(img_scale={self.img_scale}, '
        repr_str += f'down_ratio={self.down_ratio}) '
        return repr_str


1822
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1823
class RandomShiftScale(BaseTransform):
1824
1825
1826
1827
    """Random shift scale.

    Different from the normal shift and scale function, it doesn't
    directly shift or scale image. It can record the shift and scale
1828
    infos into loading TRANSFORMS. It's designed to be used with
1829
1830
1831
1832
1833
1834
1835
    AffineResize together.

    Args:
        shift_scale (tuple[float]): Shift and scale range.
        aug_prob (float): The shifting and scaling probability.
    """

1836
    def __init__(self, shift_scale: Tuple[float], aug_prob: float) -> None:
1837
1838
1839
1840

        self.shift_scale = shift_scale
        self.aug_prob = aug_prob

ZCMax's avatar
ZCMax committed
1841
    def transform(self, results: dict) -> dict:
1842
1843
1844
1845
1846
1847
1848
        """Call function to record random shift and scale infos.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after random shift and scale, 'center', 'size'
1849
            and 'affine_aug' keys are added in the result dict.
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
        """
        img = results['img']

        height, width = img.shape[:2]

        center = np.array([width / 2, height / 2], dtype=np.float32)
        size = np.array([width, height], dtype=np.float32)

        if random.random() < self.aug_prob:
            shift, scale = self.shift_scale[0], self.shift_scale[1]
            shift_ranges = np.arange(-shift, shift + 0.1, 0.1)
            center[0] += size[0] * random.choice(shift_ranges)
            center[1] += size[1] * random.choice(shift_ranges)
            scale_ranges = np.arange(1 - scale, 1 + scale + 0.1, 0.1)
            size *= random.choice(scale_ranges)
            results['affine_aug'] = True
        else:
            results['affine_aug'] = False

        results['center'] = center
        results['size'] = size

        return results

1874
    def __repr__(self) -> str:
1875
        """str: Return a string that describes the module."""
1876
1877
1878
1879
        repr_str = self.__class__.__name__
        repr_str += f'(shift_scale={self.shift_scale}, '
        repr_str += f'aug_prob={self.aug_prob}) '
        return repr_str
1880
1881
1882
1883
1884


@TRANSFORMS.register_module()
class Resize3D(Resize):

1885
    def _resize_3d(self, results: dict) -> None:
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
        """Resize centers_2d and modify camera intrinisc with
        ``results['scale']``."""
        if 'centers_2d' in results:
            results['centers_2d'] *= results['scale_factor'][:2]
        results['cam2img'][0] *= np.array(results['scale_factor'][0])
        results['cam2img'][1] *= np.array(results['scale_factor'][1])

    def transform(self, results: dict) -> dict:
        """Transform function to resize images, bounding boxes, semantic
        segmentation map and keypoints.

        Args:
            results (dict): Result dict from loading pipeline.
1899

1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
        Returns:
            dict: Resized results, 'img', 'gt_bboxes', 'gt_seg_map',
            'gt_keypoints', 'scale', 'scale_factor', 'img_shape',
            and 'keep_ratio' keys are updated in result dict.
        """

        super(Resize3D, self).transform(results)
        self._resize_3d(results)
        return results


@TRANSFORMS.register_module()
class RandomResize3D(RandomResize):
    """The difference between RandomResize3D and RandomResize:

    1. Compared to RandomResize, this class would further
        check if scale is already set in results.
    2. During resizing, this class would modify the centers_2d
        and cam2img with ``results['scale']``.
    """

1921
    def _resize_3d(self, results: dict) -> None:
1922
1923
1924
1925
1926
1927
1928
        """Resize centers_2d and modify camera intrinisc with
        ``results['scale']``."""
        if 'centers_2d' in results:
            results['centers_2d'] *= results['scale_factor'][:2]
        results['cam2img'][0] *= np.array(results['scale_factor'][0])
        results['cam2img'][1] *= np.array(results['scale_factor'][1])

1929
    def transform(self, results: dict) -> dict:
1930
1931
        """Transform function to resize images, bounding boxes, masks, semantic
        segmentation map. Compared to RandomResize, this function would further
1932
1933
1934
1935
        check if scale is already set in results.

        Args:
            results (dict): Result dict from loading pipeline.
1936

1937
        Returns:
1938
1939
            dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor',
            'keep_ratio' keys are added into result dict.
1940
1941
1942
1943
1944
1945
1946
1947
        """
        if 'scale' not in results:
            results['scale'] = self._random_scale()
        self.resize.scale = results['scale']
        results = self.resize(results)
        self._resize_3d(results)

        return results
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964


@TRANSFORMS.register_module()
class RandomCrop3D(RandomCrop):
    """3D version of RandomCrop. RamdomCrop3D supports the modifications of
    camera intrinsic matrix and using predefined randomness variable to do the
    augmentation.

    The absolute ``crop_size`` is sampled based on ``crop_type`` and
    ``image_size``, then the cropped results are generated.

    Required Keys:

    - img
    - gt_bboxes (np.float32) (optional)
    - gt_bboxes_labels (np.int64) (optional)
    - gt_masks (BitmapMasks | PolygonMasks) (optional)
1965
    - gt_ignore_flags (bool) (optional)
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
    - gt_seg_map (np.uint8) (optional)

    Modified Keys:

    - img
    - img_shape
    - gt_bboxes (optional)
    - gt_bboxes_labels (optional)
    - gt_masks (optional)
    - gt_ignore_flags (optional)
    - gt_seg_map (optional)

    Added Keys:

    - homography_matrix

    Args:
        crop_size (tuple): The relative ratio or absolute pixels of
            height and width.
        crop_type (str): One of "relative_range", "relative",
            "absolute", "absolute_range". "relative" randomly crops
            (h * crop_size[0], w * crop_size[1]) part from an input of size
            (h, w). "relative_range" uniformly samples relative crop size from
            range [crop_size[0], 1] and [crop_size[1], 1] for height and width
            respectively. "absolute" crops from an input with absolute size
            (crop_size[0], crop_size[1]). "absolute_range" uniformly samples
            crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w
            in range [crop_size[0], min(w, crop_size[1])].
            Defaults to "absolute".
        allow_negative_crop (bool): Whether to allow a crop that does
            not contain any bbox area. Defaults to False.
        recompute_bbox (bool): Whether to re-compute the boxes based
            on cropped instance masks. Defaults to False.
        bbox_clip_border (bool): Whether clip the objects outside
            the border of the image. Defaults to True.
2001
        rel_offset_h (tuple): The cropping interval of image height. Defaults
2002
            to (0., 1.).
2003
        rel_offset_w (tuple): The cropping interval of image width. Defaults
2004
2005
2006
2007
            to (0., 1.).

    Note:
        - If the image is smaller than the absolute crop size, return the
2008
          original image.
2009
2010
2011
2012
2013
2014
2015
2016
        - The keys for bboxes, labels and masks must be aligned. That is,
          ``gt_bboxes`` corresponds to ``gt_labels`` and ``gt_masks``, and
          ``gt_bboxes_ignore`` corresponds to ``gt_labels_ignore`` and
          ``gt_masks_ignore``.
        - If the crop does not contain any gt-bbox region and
          ``allow_negative_crop`` is set to False, skip this image.
    """

2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
    def __init__(
        self,
        crop_size: tuple,
        crop_type: str = 'absolute',
        allow_negative_crop: bool = False,
        recompute_bbox: bool = False,
        bbox_clip_border: bool = True,
        rel_offset_h: tuple = (0., 1.),
        rel_offset_w: tuple = (0., 1.)
    ) -> None:
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
        super().__init__(
            crop_size=crop_size,
            crop_type=crop_type,
            allow_negative_crop=allow_negative_crop,
            recompute_bbox=recompute_bbox,
            bbox_clip_border=bbox_clip_border)
        # rel_offset specifies the relative offset range of cropping origin
        # [0., 1.] means starting from 0*margin to 1*margin + 1
        self.rel_offset_h = rel_offset_h
        self.rel_offset_w = rel_offset_w

2038
2039
2040
2041
    def _crop_data(self,
                   results: dict,
                   crop_size: tuple,
                   allow_negative_crop: bool = False) -> dict:
2042
2043
2044
2045
2046
2047
2048
        """Function to randomly crop images, bounding boxes, masks, semantic
        segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.
            crop_size (tuple): Expected absolute size after cropping, (h, w).
            allow_negative_crop (bool): Whether to allow a crop that does not
2049
                contain any bbox area. Defaults to False.
2050
2051
2052

        Returns:
            dict: Randomly cropped results, 'img_shape' key in result dict is
2053
            updated according to crop size.
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
        """
        assert crop_size[0] > 0 and crop_size[1] > 0
        for key in results.get('img_fields', ['img']):
            img = results[key]
            if 'img_crop_offset' not in results:
                margin_h = max(img.shape[0] - crop_size[0], 0)
                margin_w = max(img.shape[1] - crop_size[1], 0)
                # TOCHECK: a little different from LIGA implementation
                offset_h = np.random.randint(
                    self.rel_offset_h[0] * margin_h,
                    self.rel_offset_h[1] * margin_h + 1)
                offset_w = np.random.randint(
                    self.rel_offset_w[0] * margin_w,
                    self.rel_offset_w[1] * margin_w + 1)
            else:
                offset_w, offset_h = results['img_crop_offset']

            crop_h = min(crop_size[0], img.shape[0])
            crop_w = min(crop_size[1], img.shape[1])
            crop_y1, crop_y2 = offset_h, offset_h + crop_h
            crop_x1, crop_x2 = offset_w, offset_w + crop_w

            # crop the image
            img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
            img_shape = img.shape
            results[key] = img
        results['img_shape'] = img_shape

        # crop bboxes accordingly and clip to the image boundary
        for key in results.get('bbox_fields', []):
            # e.g. gt_bboxes and gt_bboxes_ignore
            bbox_offset = np.array([offset_w, offset_h, offset_w, offset_h],
                                   dtype=np.float32)
            bboxes = results[key] - bbox_offset
            if self.bbox_clip_border:
                bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1])
                bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0])
            valid_inds = (bboxes[:, 2] > bboxes[:, 0]) & (
                bboxes[:, 3] > bboxes[:, 1])
            # If the crop does not contain any gt-bbox area and
            # allow_negative_crop is False, skip this image.
            if (key == 'gt_bboxes' and not valid_inds.any()
                    and not allow_negative_crop):
                return None
            results[key] = bboxes[valid_inds, :]
            # label fields. e.g. gt_labels and gt_labels_ignore
            label_key = self.bbox2label.get(key)
            if label_key in results:
                results[label_key] = results[label_key][valid_inds]

            # mask fields, e.g. gt_masks and gt_masks_ignore
            mask_key = self.bbox2mask.get(key)
            if mask_key in results:
                results[mask_key] = results[mask_key][
                    valid_inds.nonzero()[0]].crop(
                        np.asarray([crop_x1, crop_y1, crop_x2, crop_y2]))
                if self.recompute_bbox:
                    results[key] = results[mask_key].get_bboxes()

        # crop semantic seg
        for key in results.get('seg_fields', []):
            results[key] = results[key][crop_y1:crop_y2, crop_x1:crop_x2]

        # manipulate camera intrinsic matrix
        # needs to apply offset to K instead of P2 (on KITTI)
        if isinstance(results['cam2img'], list):
            # TODO ignore this, but should handle it in the future
            pass
        else:
            K = results['cam2img'][:3, :3].copy()
            inv_K = np.linalg.inv(K)
            T = np.matmul(inv_K, results['cam2img'][:3])
            K[0, 2] -= crop_x1
            K[1, 2] -= crop_y1
            offset_cam2img = np.matmul(K, T)
            results['cam2img'][:offset_cam2img.shape[0], :offset_cam2img.
                               shape[1]] = offset_cam2img

        results['img_crop_offset'] = [offset_w, offset_h]

        return results

2136
    def transform(self, results: dict) -> dict:
2137
2138
2139
2140
2141
2142
2143
2144
        """Transform function to randomly crop images, bounding boxes, masks,
        semantic segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Randomly cropped results, 'img_shape' key in result dict is
2145
            updated according to crop size.
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
        """
        image_size = results['img'].shape[:2]
        if 'crop_size' not in results:
            crop_size = self._get_crop_size(image_size)
            results['crop_size'] = crop_size
        else:
            crop_size = results['crop_size']
        results = self._crop_data(results, crop_size, self.allow_negative_crop)
        return results

2156
2157
    def __repr__(self) -> dict:
        """str: Return a string that describes the module."""
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
        repr_str = self.__class__.__name__
        repr_str += f'(crop_size={self.crop_size}, '
        repr_str += f'crop_type={self.crop_type}, '
        repr_str += f'allow_negative_crop={self.allow_negative_crop}, '
        repr_str += f'bbox_clip_border={self.bbox_clip_border}), '
        repr_str += f'rel_offset_h={self.rel_offset_h}), '
        repr_str += f'rel_offset_w={self.rel_offset_w})'
        return repr_str


@TRANSFORMS.register_module()
class PhotoMetricDistortion3D(PhotoMetricDistortion):
    """Apply photometric distortion to image sequentially, every transformation
    is applied with a probability of 0.5. The position of random contrast is in
    second or second to last.

    PhotoMetricDistortion3D further support using predefined randomness
    variable to do the augmentation.

    1. random brightness
    2. random contrast (mode 0)
    3. convert color from BGR to HSV
    4. random saturation
    5. random hue
    6. convert color from HSV to BGR
    7. random contrast (mode 1)
    8. randomly swap channels

    Required Keys:

    - img (np.uint8)

    Modified Keys:

    - img (np.float32)

    Args:
        brightness_delta (int): delta of brightness.
        contrast_range (sequence): range of contrast.
        saturation_range (sequence): range of saturation.
        hue_delta (int): delta of hue.
    """

    def transform(self, results: dict) -> dict:
        """Transform function to perform photometric distortion on images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with images distorted.
        """
        assert 'img' in results, '`img` is not found in results'
        img = results['img']
        img = img.astype(np.float32)
        if 'photometric_param' not in results:
            photometric_param = self._random_flags()
            results['photometric_param'] = photometric_param
        else:
            photometric_param = results['photometric_param']

        (mode, brightness_flag, contrast_flag, saturation_flag, hue_flag,
         swap_flag, delta_value, alpha_value, saturation_value, hue_value,
         swap_value) = photometric_param

        # random brightness
        if brightness_flag:
            img += delta_value

        # mode == 0 --> do random contrast first
        # mode == 1 --> do random contrast last
        if mode == 1:
            if contrast_flag:
                img *= alpha_value

        # convert color from BGR to HSV
        img = mmcv.bgr2hsv(img)

        # random saturation
        if saturation_flag:
            img[..., 1] *= saturation_value

        # random hue
        if hue_flag:
            img[..., 0] += hue_value
            img[..., 0][img[..., 0] > 360] -= 360
            img[..., 0][img[..., 0] < 0] += 360

        # convert color from HSV to BGR
        img = mmcv.hsv2bgr(img)

        # random contrast
        if mode == 0:
            if contrast_flag:
                img *= alpha_value

        # randomly swap channels
        if swap_flag:
            img = img[..., swap_value]

        results['img'] = img
        return results


@TRANSFORMS.register_module()
2263
class MultiViewWrapper(BaseTransform):
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
    """Wrap transformation from single-view into multi-view.

    The wrapper processes the images from multi-view one by one. For each
    image, it constructs a pseudo dict according to the keys specified by the
    'process_fields' parameter. After the transformation is finished, desired
    information can be collected by specifying the keys in the 'collected_keys'
    parameter. Multi-view images share the same transformation parameters
    but do not share the same magnitude when a random transformation is
    conducted.

    Args:
        transforms (list[dict]): A list of dict specifying the transformations
            for the monocular situation.
        override_aug_config (bool): flag of whether to use the same aug config
2278
            for multiview image. Defaults to True.
2279
        process_fields (list): Desired keys that the transformations should
2280
            be conducted on. Defaults to ['img', 'cam2img', 'lidar2cam'].
2281
        collected_keys (list): Collect information in transformation
2282
            like rotate angles, crop roi, and flip state. Defaults to
2283
2284
2285
2286
                ['scale', 'scale_factor', 'crop',
                 'crop_offset', 'ori_shape',
                 'pad_shape', 'img_shape',
                 'pad_fixed_size', 'pad_size_divisor',
2287
                 'flip', 'flip_direction', 'rotate'].
2288
        randomness_keys (list): The keys that related to the randomness
2289
            in transformation. Defaults to
2290
2291
2292
2293
                    ['scale', 'scale_factor', 'crop_size', 'flip',
                     'flip_direction', 'photometric_param']
    """

2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
    def __init__(
        self,
        transforms: dict,
        override_aug_config: bool = True,
        process_fields: list = ['img', 'cam2img', 'lidar2cam'],
        collected_keys: list = [
            'scale', 'scale_factor', 'crop', 'img_crop_offset', 'ori_shape',
            'pad_shape', 'img_shape', 'pad_fixed_size', 'pad_size_divisor',
            'flip', 'flip_direction', 'rotate'
        ],
        randomness_keys: list = [
            'scale', 'scale_factor', 'crop_size', 'img_crop_offset', 'flip',
            'flip_direction', 'photometric_param'
        ]
    ) -> None:
2309
        self.transforms = Compose(transforms)
2310
2311
2312
2313
2314
        self.override_aug_config = override_aug_config
        self.collected_keys = collected_keys
        self.process_fields = process_fields
        self.randomness_keys = randomness_keys

2315
    def transform(self, input_dict: dict) -> dict:
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
        """Transform function to do the transform for multiview image.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: output dict after transformtaion
        """
        # store the augmentation related keys for each image.
        for key in self.collected_keys:
            if key not in input_dict or \
                    not isinstance(input_dict[key], list):
                input_dict[key] = []
        prev_process_dict = {}
        for img_id in range(len(input_dict['img'])):
            process_dict = {}

            # override the process dict (e.g. scale in random scale,
            # crop_size in random crop, flip, flip_direction in
            # random flip)
            if img_id != 0 and self.override_aug_config:
                for key in self.randomness_keys:
                    if key in prev_process_dict:
                        process_dict[key] = prev_process_dict[key]

            for key in self.process_fields:
                if key in input_dict:
                    process_dict[key] = input_dict[key][img_id]
2344
            process_dict = self.transforms(process_dict)
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
            # store the randomness variable in transformation.
            prev_process_dict = process_dict

            # store the related results to results_dict
            for key in self.process_fields:
                if key in process_dict:
                    input_dict[key][img_id] = process_dict[key]
            # update the keys
            for key in self.collected_keys:
                if key in process_dict:
                    if len(input_dict[key]) == img_id + 1:
                        input_dict[key][img_id] = process_dict[key]
                    else:
                        input_dict[key].append(process_dict[key])

        for key in self.collected_keys:
            if len(input_dict[key]) == 0:
                input_dict.pop(key)
        return input_dict
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531


@TRANSFORMS.register_module()
class PolarMix(BaseTransform):
    """PolarMix data augmentation.

    The polarmix transform steps are as follows:

        1. Another random point cloud is picked by dataset.
        2. Exchange sectors of two point clouds that are cut with certain
           azimuth angles.
        3. Cut point instances from picked point cloud, rotate them by multiple
           azimuth angles, and paste the cut and rotated instances.

    Required Keys:

    - points (:obj:`BasePoints`)
    - pts_semantic_mask (np.int64)
    - dataset (:obj:`BaseDataset`)

    Modified Keys:

    - points (:obj:`BasePoints`)
    - pts_semantic_mask (np.int64)

    Args:
        instance_classes (List[int]): Semantic masks which represent the
            instance.
        swap_ratio (float): Swap ratio of two point cloud. Defaults to 0.5.
        rotate_paste_ratio (float): Rotate paste ratio. Defaults to 1.0.
        pre_transform (Sequence[dict], optional): Sequence of transform object
            or config dict to be composed. Defaults to None.
        prob (float): The transformation probability. Defaults to 1.0.
    """

    def __init__(self,
                 instance_classes: List[int],
                 swap_ratio: float = 0.5,
                 rotate_paste_ratio: float = 1.0,
                 pre_transform: Optional[Sequence[dict]] = None,
                 prob: float = 1.0) -> None:
        assert is_list_of(instance_classes, int), \
            'instance_classes should be a list of int'
        self.instance_classes = instance_classes
        self.swap_ratio = swap_ratio
        self.rotate_paste_ratio = rotate_paste_ratio

        self.prob = prob
        if pre_transform is None:
            self.pre_transform = None
        else:
            self.pre_transform = Compose(pre_transform)

    def polar_mix_transform(self, input_dict: dict, mix_results: dict) -> dict:
        """PolarMix transform function.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            mix_results (dict): Mixed dict picked from dataset.

        Returns:
            dict: output dict after transformation.
        """
        mix_points = mix_results['points']
        mix_pts_semantic_mask = mix_results['pts_semantic_mask']

        points = input_dict['points']
        pts_semantic_mask = input_dict['pts_semantic_mask']

        # 1. swap point cloud
        if np.random.random() < self.swap_ratio:
            start_angle = (np.random.random() - 1) * np.pi  # -pi~0
            end_angle = start_angle + np.pi
            # calculate horizontal angle for each point
            yaw = -torch.atan2(points.coord[:, 1], points.coord[:, 0])
            mix_yaw = -torch.atan2(mix_points.coord[:, 1], mix_points.coord[:,
                                                                            0])

            # select points in sector
            idx = (yaw <= start_angle) | (yaw >= end_angle)
            mix_idx = (mix_yaw > start_angle) & (mix_yaw < end_angle)

            # swap
            points = points.cat([points[idx], mix_points[mix_idx]])
            pts_semantic_mask = np.concatenate(
                (pts_semantic_mask[idx.numpy()],
                 mix_pts_semantic_mask[mix_idx.numpy()]),
                axis=0)

        # 2. rotate-pasting
        if np.random.random() < self.rotate_paste_ratio:
            # extract instance points
            instance_points, instance_pts_semantic_mask = [], []
            for instance_class in self.instance_classes:
                mix_idx = mix_pts_semantic_mask == instance_class
                instance_points.append(mix_points[mix_idx])
                instance_pts_semantic_mask.append(
                    mix_pts_semantic_mask[mix_idx])
            instance_points = mix_points.cat(instance_points)
            instance_pts_semantic_mask = np.concatenate(
                instance_pts_semantic_mask, axis=0)

            # rotate-copy
            copy_points = [instance_points]
            copy_pts_semantic_mask = [instance_pts_semantic_mask]
            angle_list = [
                np.random.random() * np.pi * 2 / 3,
                (np.random.random() + 1) * np.pi * 2 / 3
            ]
            for angle in angle_list:
                new_points = instance_points.clone()
                new_points.rotate(angle)
                copy_points.append(new_points)
                copy_pts_semantic_mask.append(instance_pts_semantic_mask)
            copy_points = instance_points.cat(copy_points)
            copy_pts_semantic_mask = np.concatenate(
                copy_pts_semantic_mask, axis=0)

            points = points.cat([points, copy_points])
            pts_semantic_mask = np.concatenate(
                (pts_semantic_mask, copy_pts_semantic_mask), axis=0)

        input_dict['points'] = points
        input_dict['pts_semantic_mask'] = pts_semantic_mask
        return input_dict

    def transform(self, input_dict: dict) -> dict:
        """PolarMix transform function.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: output dict after transformation.
        """
        if np.random.rand() > self.prob:
            return input_dict

        assert 'dataset' in input_dict, \
            '`dataset` is needed to pass through PolarMix, while not found.'
        dataset = input_dict['dataset']

        # get index of other point cloud
        index = np.random.randint(0, len(dataset))

        mix_results = dataset.get_data_info(index)

        if self.pre_transform is not None:
            # pre_transform may also require dataset
            mix_results.update({'dataset': dataset})
            # before polarmix need to go through
            # the necessary pre_transform
            mix_results = self.pre_transform(mix_results)
            mix_results.pop('dataset')

        input_dict = self.polar_mix_transform(input_dict, mix_results)

        return input_dict

    def __repr__(self) -> str:
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(instance_classes={self.instance_classes}, '
        repr_str += f'swap_ratio={self.swap_ratio}, '
        repr_str += f'rotate_paste_ratio={self.rotate_paste_ratio}, '
        repr_str += f'pre_transform={self.pre_transform}, '
        repr_str += f'prob={self.prob})'
        return repr_str
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602


@TRANSFORMS.register_module()
class LaserMix(BaseTransform):
    """LaserMix data augmentation.

    The lasermix transform steps are as follows:

        1. Another random point cloud is picked by dataset.
        2. Divide the point cloud into several regions according to pitch
           angles and combine the areas crossly.

    Required Keys:

    - points (:obj:`BasePoints`)
    - pts_semantic_mask (np.int64)
    - dataset (:obj:`BaseDataset`)

    Modified Keys:

    - points (:obj:`BasePoints`)
    - pts_semantic_mask (np.int64)

    Args:
        num_areas (List[int]): A list of area numbers will be divided into.
        pitch_angles (Sequence[float]): Pitch angles used to divide areas.
        pre_transform (Sequence[dict], optional): Sequence of transform object
            or config dict to be composed. Defaults to None.
        prob (float): The transformation probability. Defaults to 1.0.
    """

    def __init__(self,
                 num_areas: List[int],
                 pitch_angles: Sequence[float],
                 pre_transform: Optional[Sequence[dict]] = None,
                 prob: float = 1.0) -> None:
        assert is_list_of(num_areas, int), \
            'num_areas should be a list of int.'
        self.num_areas = num_areas

        assert len(pitch_angles) == 2, \
            'The length of pitch_angles should be 2, ' \
            f'but got {len(pitch_angles)}.'
        assert pitch_angles[1] > pitch_angles[0], \
            'pitch_angles[1] should be larger than pitch_angles[0].'
        self.pitch_angles = pitch_angles

        self.prob = prob
        if pre_transform is None:
            self.pre_transform = None
        else:
            self.pre_transform = Compose(pre_transform)

    def laser_mix_transform(self, input_dict: dict, mix_results: dict) -> dict:
        """LaserMix transform function.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            mix_results (dict): Mixed dict picked from dataset.

        Returns:
            dict: output dict after transformation.
        """
        mix_points = mix_results['points']
        mix_pts_semantic_mask = mix_results['pts_semantic_mask']

        points = input_dict['points']
        pts_semantic_mask = input_dict['pts_semantic_mask']

        rho = torch.sqrt(points.coord[:, 0]**2 + points.coord[:, 1]**2)
        pitch = torch.atan2(points.coord[:, 2], rho)
Xiang Xu's avatar
Xiang Xu committed
2603
2604
        pitch = torch.clamp(pitch, self.pitch_angles[0] + 1e-5,
                            self.pitch_angles[1] - 1e-5)
2605
2606
2607
2608

        mix_rho = torch.sqrt(mix_points.coord[:, 0]**2 +
                             mix_points.coord[:, 1]**2)
        mix_pitch = torch.atan2(mix_points.coord[:, 2], mix_rho)
Xiang Xu's avatar
Xiang Xu committed
2609
2610
        mix_pitch = torch.clamp(mix_pitch, self.pitch_angles[0] + 1e-5,
                                self.pitch_angles[1] - 1e-5)
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676

        num_areas = np.random.choice(self.num_areas, size=1)[0]
        angle_list = np.linspace(self.pitch_angles[1], self.pitch_angles[0],
                                 num_areas + 1)
        out_points = []
        out_pts_semantic_mask = []
        for i in range(num_areas):
            # convert angle to radian
            start_angle = angle_list[i + 1] / 180 * np.pi
            end_angle = angle_list[i] / 180 * np.pi
            if i % 2 == 0:  # pick from original point cloud
                idx = (pitch > start_angle) & (pitch <= end_angle)
                out_points.append(points[idx])
                out_pts_semantic_mask.append(pts_semantic_mask[idx.numpy()])
            else:  # pickle from mixed point cloud
                idx = (mix_pitch > start_angle) & (mix_pitch <= end_angle)
                out_points.append(mix_points[idx])
                out_pts_semantic_mask.append(
                    mix_pts_semantic_mask[idx.numpy()])
        out_points = points.cat(out_points)
        out_pts_semantic_mask = np.concatenate(out_pts_semantic_mask, axis=0)
        input_dict['points'] = out_points
        input_dict['pts_semantic_mask'] = out_pts_semantic_mask
        return input_dict

    def transform(self, input_dict: dict) -> dict:
        """LaserMix transform function.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: output dict after transformation.
        """
        if np.random.rand() > self.prob:
            return input_dict

        assert 'dataset' in input_dict, \
            '`dataset` is needed to pass through LaserMix, while not found.'
        dataset = input_dict['dataset']

        # get index of other point cloud
        index = np.random.randint(0, len(dataset))

        mix_results = dataset.get_data_info(index)

        if self.pre_transform is not None:
            # pre_transform may also require dataset
            mix_results.update({'dataset': dataset})
            # before lasermix need to go through
            # the necessary pre_transform
            mix_results = self.pre_transform(mix_results)
            mix_results.pop('dataset')

        input_dict = self.laser_mix_transform(input_dict, mix_results)

        return input_dict

    def __repr__(self) -> str:
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_areas={self.num_areas}, '
        repr_str += f'pitch_angles={self.pitch_angles}, '
        repr_str += f'pre_transform={self.pre_transform}, '
        repr_str += f'prob={self.prob})'
        return repr_str