test_bbox_coders.py 22 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
yinchimaoliang's avatar
yinchimaoliang committed
2
import torch
Tai-Wang's avatar
Tai-Wang committed
3
4
from mmcv.cnn import Scale
from torch import nn as nn
yinchimaoliang's avatar
yinchimaoliang committed
5

6
from mmdet3d.core.bbox import DepthInstance3DBoxes, LiDARInstance3DBoxes
yinchimaoliang's avatar
yinchimaoliang committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from mmdet.core import build_bbox_coder


def test_partial_bin_based_box_coder():
    box_coder_cfg = dict(
        type='PartialBinBasedBBoxCoder',
        num_sizes=10,
        num_dir_bins=12,
        with_rot=True,
        mean_sizes=[[2.114256, 1.620300, 0.927272],
                    [0.791118, 1.279516, 0.718182],
                    [0.923508, 1.867419, 0.845495],
                    [0.591958, 0.552978, 0.827272],
                    [0.699104, 0.454178, 0.75625],
                    [0.69519, 1.346299, 0.736364],
                    [0.528526, 1.002642, 1.172878],
                    [0.500618, 0.632163, 0.683424],
                    [0.404671, 1.071108, 1.688889],
                    [0.76584, 1.398258, 0.472728]])
    box_coder = build_bbox_coder(box_coder_cfg)

    # test eocode
    gt_bboxes = DepthInstance3DBoxes(
        [[0.8308, 4.1168, -1.2035, 2.2493, 1.8444, 1.9245, 1.6486],
         [2.3002, 4.8149, -1.2442, 0.5718, 0.8629, 0.9510, 1.6030],
         [-1.1477, 1.8090, -1.1725, 0.6965, 1.5273, 2.0563, 0.0552]])

    gt_labels = torch.tensor([0, 1, 2])
    center_target, size_class_target, size_res_target, dir_class_target, \
        dir_res_target = box_coder.encode(gt_bboxes, gt_labels)
    expected_center_target = torch.tensor([[0.8308, 4.1168, -0.2413],
                                           [2.3002, 4.8149, -0.7687],
                                           [-1.1477, 1.8090, -0.1444]])
    expected_size_class_target = torch.tensor([0, 1, 2])
    expected_size_res_target = torch.tensor([[0.1350, 0.2241, 0.9972],
                                             [-0.2193, -0.4166, 0.2328],
                                             [-0.2270, -0.3401, 1.2108]])
    expected_dir_class_target = torch.tensor([3, 3, 0])
    expected_dir_res_target = torch.tensor([0.0778, 0.0322, 0.0552])
    assert torch.allclose(center_target, expected_center_target, atol=1e-4)
    assert torch.all(size_class_target == expected_size_class_target)
    assert torch.allclose(size_res_target, expected_size_res_target, atol=1e-4)
    assert torch.all(dir_class_target == expected_dir_class_target)
    assert torch.allclose(dir_res_target, expected_dir_res_target, atol=1e-4)

    # test decode
    center = torch.tensor([[[0.8014, 3.4134,
                             -0.6133], [2.6375, 8.4191, 2.0438],
                            [4.2017, 5.2504,
                             -0.7851], [-1.0088, 5.4107, 1.6293],
                            [1.4837, 4.0268, 0.6222]]])

    size_class = torch.tensor([[[
        -1.0061, -2.2788, 1.1322, -4.4380, -11.0526, -2.8113, -2.0642, -7.5886,
        -4.8627, -5.0437
    ],
                                [
                                    -2.2058, -0.3527, -1.9976, 0.8815, -2.7980,
                                    -1.9053, -0.5097, -2.0232, -1.4242, -4.1192
                                ],
                                [
                                    -1.4783, -0.1009, -1.1537, 0.3052, -4.3147,
                                    -2.6529, 0.2729, -0.3755, -2.6479, -3.7548
                                ],
                                [
                                    -6.1809, -3.5024, -8.3273, 1.1252, -4.3315,
                                    -7.8288, -4.6091, -5.8153, 0.7480, -10.1396
                                ],
                                [
                                    -9.0424, -3.7883, -6.0788, -1.8855,
                                    -10.2493, -9.7164, -1.0658, -4.1713,
                                    1.1173, -10.6204
                                ]]])

    size_res = torch.tensor([[[[-9.8976e-02, -5.2152e-01, -7.6421e-02],
                               [1.4593e-01, 5.6099e-01, 8.9421e-02],
                               [5.1481e-02, 3.9280e-01, 1.2705e-01],
                               [3.6869e-01, 7.0558e-01, 1.4647e-01],
                               [4.7683e-01, 3.3644e-01, 2.3481e-01],
                               [8.7346e-02, 8.4987e-01, 3.3265e-01],
                               [2.1393e-01, 8.5585e-01, 9.8948e-02],
                               [7.8530e-02, 5.9694e-02, -8.7211e-02],
                               [1.8551e-01, 1.1308e+00, -5.1864e-01],
                               [3.6485e-01, 7.3757e-01, 1.5264e-01]],
                              [[-9.5593e-01, -5.0455e-01, 1.9554e-01],
                               [-1.0870e-01, 1.8025e-01, 1.0228e-01],
                               [-8.2882e-02, -4.3771e-01, 9.2135e-02],
                               [-4.0840e-02, -5.9841e-02, 1.1982e-01],
                               [7.3448e-02, 5.2045e-02, 1.7301e-01],
                               [-4.0440e-02, 4.9532e-02, 1.1266e-01],
                               [3.5857e-02, 1.3564e-02, 1.0212e-01],
                               [-1.0407e-01, -5.9321e-02, 9.2622e-02],
                               [7.4691e-03, 9.3080e-02, -4.4077e-01],
                               [-6.0121e-02, -1.3381e-01, -6.8083e-02]],
                              [[-9.3970e-01, -9.7823e-01, -5.1075e-02],
                               [-1.2843e-01, -1.8381e-01, 7.1327e-02],
                               [-1.2247e-01, -8.1115e-01, 3.6495e-02],
                               [4.9154e-02, -4.5440e-02, 8.9520e-02],
                               [1.5653e-01, 3.5990e-02, 1.6414e-01],
                               [-5.9621e-02, 4.9357e-03, 1.4264e-01],
                               [8.5235e-04, -1.0030e-01, -3.0712e-02],
                               [-3.7255e-02, 2.8996e-02, 5.5545e-02],
                               [3.9298e-02, -4.7420e-02, -4.9147e-01],
                               [-1.1548e-01, -1.5895e-01, -3.9155e-02]],
                              [[-1.8725e+00, -7.4102e-01, 1.0524e+00],
                               [-3.3210e-01, 4.7828e-02, -3.2666e-02],
                               [-2.7949e-01, 5.5541e-02, -1.0059e-01],
                               [-8.5533e-02, 1.4870e-01, -1.6709e-01],
                               [3.8283e-01, 2.6609e-01, 2.1361e-01],
                               [-4.2156e-01, 3.2455e-01, 6.7309e-01],
                               [-2.4336e-02, -8.3366e-02, 3.9913e-01],
                               [8.2142e-03, 4.8323e-02, -1.5247e-01],
                               [-4.8142e-02, -3.0074e-01, -1.6829e-01],
                               [1.3274e-01, -2.3825e-01, -1.8127e-01]],
                              [[-1.2576e+00, -6.1550e-01, 7.9430e-01],
                               [-4.7222e-01, 1.5634e+00, -5.9460e-02],
                               [-3.5367e-01, 1.3616e+00, -1.6421e-01],
                               [-1.6611e-02, 2.4231e-01, -9.6188e-02],
                               [5.4486e-01, 4.6833e-01, 5.1151e-01],
                               [-6.1755e-01, 1.0292e+00, 1.2458e+00],
                               [-6.8152e-02, 2.4786e-01, 9.5088e-01],
                               [-4.8745e-02, 1.5134e-01, -9.9962e-02],
                               [2.4485e-03, -7.5991e-02, 1.3545e-01],
                               [4.1608e-01, -1.2093e-01, -3.1643e-01]]]])

    dir_class = torch.tensor([[[
        -1.0230, -5.1965, -5.2195, 2.4030, -2.7661, -7.3399, -1.1640, -4.0630,
        -5.2940, 0.8245, -3.1869, -6.1743
    ],
                               [
                                   -1.9503, -1.6940, -0.8716, -1.1494, -0.8196,
                                   0.2862, -0.2921, -0.7894, -0.2481, -0.9916,
                                   -1.4304, -1.2466
                               ],
                               [
                                   -1.7435, -1.2043, -0.1265, 0.5083, -0.0717,
                                   -0.9560, -1.6171, -2.6463, -2.3863, -2.1358,
                                   -1.8812, -2.3117
                               ],
                               [
                                   -1.9282, 0.3792, -1.8426, -1.4587, -0.8582,
                                   -3.4639, -3.2133, -3.7867, -7.6781, -6.4459,
                                   -6.2455, -5.4797
                               ],
                               [
                                   -3.1869, 0.4456, -0.5824, 0.9994, -1.0554,
                                   -8.4232, -7.7019, -7.1382, -10.2724,
                                   -7.8229, -8.1860, -8.6194
                               ]]])

    dir_res = torch.tensor(
        [[[
            1.1022e-01, -2.3750e-01, 2.0381e-01, 1.2177e-01, -2.8501e-01,
            1.5351e-01, 1.2218e-01, -2.0677e-01, 1.4468e-01, 1.1593e-01,
            -2.6864e-01, 1.1290e-01
        ],
          [
              -1.5788e-02, 4.1538e-02, -2.2857e-04, -1.4011e-02, 4.2560e-02,
              -3.1186e-03, -5.0343e-02, 6.8110e-03, -2.6728e-02, -3.2781e-02,
              3.6889e-02, -1.5609e-03
          ],
          [
              1.9004e-02, 5.7105e-03, 6.0329e-02, 1.3074e-02, -2.5546e-02,
              -1.1456e-02, -3.2484e-02, -3.3487e-02, 1.6609e-03, 1.7095e-02,
              1.2647e-05, 2.4814e-02
          ],
          [
              1.4482e-01, -6.3083e-02, 5.8307e-02, 9.1396e-02, -8.4571e-02,
              4.5890e-02, 5.6243e-02, -1.2448e-01, -9.5244e-02, 4.5746e-02,
              -1.7390e-02, 9.0267e-02
          ],
          [
              1.8065e-01, -2.0078e-02, 8.5401e-02, 1.0784e-01, -1.2495e-01,
              2.2796e-02, 1.1310e-01, -8.4364e-02, -1.1904e-01, 6.1180e-02,
              -1.8109e-02, 1.1229e-01
          ]]])
    bbox_out = dict(
        center=center,
        size_class=size_class,
        size_res=size_res,
        dir_class=dir_class,
        dir_res=dir_res)

    bbox3d = box_coder.decode(bbox_out)
    expected_bbox3d = torch.tensor(
        [[[0.8014, 3.4134, -0.6133, 0.9750, 2.2602, 0.9725, 1.6926],
          [2.6375, 8.4191, 2.0438, 0.5511, 0.4931, 0.9471, 2.6149],
          [4.2017, 5.2504, -0.7851, 0.6411, 0.5075, 0.9168, 1.5839],
          [-1.0088, 5.4107, 1.6293, 0.5064, 0.7017, 0.6602, 0.4605],
          [1.4837, 4.0268, 0.6222, 0.4071, 0.9951, 1.8243, 1.6786]]])
    assert torch.allclose(bbox3d, expected_bbox3d, atol=1e-4)

    # test split_pred
200
201
    cls_preds = torch.rand(2, 12, 256)
    reg_preds = torch.rand(2, 67, 256)
yinchimaoliang's avatar
yinchimaoliang committed
202
    base_xyz = torch.rand(2, 256, 3)
203
    results = box_coder.split_pred(cls_preds, reg_preds, base_xyz)
yinchimaoliang's avatar
yinchimaoliang committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    obj_scores = results['obj_scores']
    center = results['center']
    dir_class = results['dir_class']
    dir_res_norm = results['dir_res_norm']
    dir_res = results['dir_res']
    size_class = results['size_class']
    size_res_norm = results['size_res_norm']
    size_res = results['size_res']
    sem_scores = results['sem_scores']
    assert obj_scores.shape == torch.Size([2, 256, 2])
    assert center.shape == torch.Size([2, 256, 3])
    assert dir_class.shape == torch.Size([2, 256, 12])
    assert dir_res_norm.shape == torch.Size([2, 256, 12])
    assert dir_res.shape == torch.Size([2, 256, 12])
    assert size_class.shape == torch.Size([2, 256, 10])
    assert size_res_norm.shape == torch.Size([2, 256, 10, 3])
    assert size_res.shape == torch.Size([2, 256, 10, 3])
    assert sem_scores.shape == torch.Size([2, 256, 10])
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328


def test_anchor_free_box_coder():
    box_coder_cfg = dict(
        type='AnchorFreeBBoxCoder', num_dir_bins=12, with_rot=True)
    box_coder = build_bbox_coder(box_coder_cfg)

    # test encode
    gt_bboxes = LiDARInstance3DBoxes([[
        2.1227e+00, 5.7951e+00, -9.9900e-01, 1.6736e+00, 4.2419e+00,
        1.5473e+00, -1.5501e+00
    ],
                                      [
                                          1.1791e+01, 9.0276e+00, -8.5772e-01,
                                          1.6210e+00, 3.5367e+00, 1.4841e+00,
                                          -1.7369e+00
                                      ],
                                      [
                                          2.3638e+01, 9.6997e+00, -5.6713e-01,
                                          1.7578e+00, 4.6103e+00, 1.5999e+00,
                                          -1.4556e+00
                                      ]])
    gt_labels = torch.tensor([0, 0, 0])

    (center_targets, size_targets, dir_class_targets,
     dir_res_targets) = box_coder.encode(gt_bboxes, gt_labels)

    expected_center_target = torch.tensor([[2.1227, 5.7951, -0.2253],
                                           [11.7908, 9.0276, -0.1156],
                                           [23.6380, 9.6997, 0.2328]])
    expected_size_targets = torch.tensor([[0.8368, 2.1210, 0.7736],
                                          [0.8105, 1.7683, 0.7421],
                                          [0.8789, 2.3052, 0.8000]])
    expected_dir_class_target = torch.tensor([9, 9, 9])
    expected_dir_res_target = torch.tensor([0.0394, -0.3172, 0.2199])
    assert torch.allclose(center_targets, expected_center_target, atol=1e-4)
    assert torch.allclose(size_targets, expected_size_targets, atol=1e-4)
    assert torch.all(dir_class_targets == expected_dir_class_target)
    assert torch.allclose(dir_res_targets, expected_dir_res_target, atol=1e-3)

    # test decode
    center = torch.tensor([[[14.5954, 6.3312, 0.7671],
                            [67.5245, 22.4422, 1.5610],
                            [47.7693, -6.7980, 1.4395]]])

    size_res = torch.tensor([[[-1.0752, 1.8760, 0.7715],
                              [-0.8016, 1.1754, 0.0102],
                              [-1.2789, 0.5948, 0.4728]]])

    dir_class = torch.tensor([[[
        0.1512, 1.7914, -1.7658, 2.1572, -0.9215, 1.2139, 0.1749, 0.8606,
        1.1743, -0.7679, -1.6005, 0.4623
    ],
                               [
                                   -0.3957, 1.2026, -1.2677, 1.3863, -0.5754,
                                   1.7083, 0.2601, 0.1129, 0.7146, -0.1367,
                                   -1.2892, -0.0083
                               ],
                               [
                                   -0.8862, 1.2050, -1.3881, 1.6604, -0.9087,
                                   1.1907, -0.0280, 0.2027, 1.0644, -0.7205,
                                   -1.0738, 0.4748
                               ]]])

    dir_res = torch.tensor([[[
        1.1151, 0.5535, -0.2053, -0.6582, -0.1616, -0.1821, 0.4675, 0.6621,
        0.8146, -0.0448, -0.7253, -0.7171
    ],
                             [
                                 0.7888, 0.2478, -0.1962, -0.7267, 0.0573,
                                 -0.2398, 0.6984, 0.5859, 0.7507, -0.1980,
                                 -0.6538, -0.6602
                             ],
                             [
                                 0.9039, 0.6109, 0.1960, -0.5016, 0.0551,
                                 -0.4086, 0.3398, 0.2759, 0.7247, -0.0655,
                                 -0.5052, -0.9026
                             ]]])
    bbox_out = dict(
        center=center, size=size_res, dir_class=dir_class, dir_res=dir_res)

    bbox3d = box_coder.decode(bbox_out)
    expected_bbox3d = torch.tensor(
        [[[14.5954, 6.3312, 0.7671, 0.1000, 3.7521, 1.5429, 0.9126],
          [67.5245, 22.4422, 1.5610, 0.1000, 2.3508, 0.1000, 2.3782],
          [47.7693, -6.7980, 1.4395, 0.1000, 1.1897, 0.9456, 1.0692]]])
    assert torch.allclose(bbox3d, expected_bbox3d, atol=1e-4)

    # test split_pred
    cls_preds = torch.rand(2, 1, 256)
    reg_preds = torch.rand(2, 30, 256)
    base_xyz = torch.rand(2, 256, 3)
    results = box_coder.split_pred(cls_preds, reg_preds, base_xyz)
    obj_scores = results['obj_scores']
    center = results['center']
    center_offset = results['center_offset']
    dir_class = results['dir_class']
    dir_res_norm = results['dir_res_norm']
    dir_res = results['dir_res']
    size = results['size']
    assert obj_scores.shape == torch.Size([2, 1, 256])
    assert center.shape == torch.Size([2, 256, 3])
    assert center_offset.shape == torch.Size([2, 256, 3])
    assert dir_class.shape == torch.Size([2, 256, 12])
    assert dir_res_norm.shape == torch.Size([2, 256, 12])
    assert dir_res.shape == torch.Size([2, 256, 12])
    assert size.shape == torch.Size([2, 256, 3])
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356


def test_centerpoint_bbox_coder():
    bbox_coder_cfg = dict(
        type='CenterPointBBoxCoder',
        post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
        max_num=500,
        score_threshold=0.1,
        pc_range=[-51.2, -51.2],
        out_size_factor=4,
        voxel_size=[0.2, 0.2])

    bbox_coder = build_bbox_coder(bbox_coder_cfg)

    batch_dim = torch.rand([2, 3, 128, 128])
    batch_hei = torch.rand([2, 1, 128, 128])
    batch_hm = torch.rand([2, 2, 128, 128])
    batch_reg = torch.rand([2, 2, 128, 128])
    batch_rotc = torch.rand([2, 1, 128, 128])
    batch_rots = torch.rand([2, 1, 128, 128])
    batch_vel = torch.rand([2, 2, 128, 128])

    temp = bbox_coder.decode(batch_hm, batch_rots, batch_rotc, batch_hei,
                             batch_dim, batch_vel, batch_reg, 5)
    for i in range(len(temp)):
        assert temp[i]['bboxes'].shape == torch.Size([500, 9])
        assert temp[i]['scores'].shape == torch.Size([500])
        assert temp[i]['labels'].shape == torch.Size([500])
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386


def test_point_xyzwhlr_bbox_coder():
    bbox_coder_cfg = dict(
        type='PointXYZWHLRBBoxCoder',
        use_mean_size=True,
        mean_size=[[3.9, 1.6, 1.56], [0.8, 0.6, 1.73], [1.76, 0.6, 1.73]])
    boxcoder = build_bbox_coder(bbox_coder_cfg)

    # test encode
    gt_bboxes_3d = torch.tensor(
        [[13.3329, 2.3514, -0.7004, 1.7508, 0.4702, 1.7909, -3.0522],
         [2.2068, -2.6994, -0.3277, 3.8703, 1.6602, 1.6913, -1.9057],
         [5.5269, 2.5085, -1.0129, 1.1496, 0.8006, 1.8887, 2.1756]])

    points = torch.tensor([[13.70, 2.40, 0.12], [3.20, -3.00, 0.2],
                           [5.70, 2.20, -0.4]])

    gt_labels_3d = torch.tensor([2, 0, 1])

    bbox_target = boxcoder.encode(gt_bboxes_3d, points, gt_labels_3d)
    expected_bbox_target = torch.tensor([[
        -0.1974, -0.0261, -0.4742, -0.0052, -0.2438, 0.0346, -0.9960, -0.0893
    ], [-0.2356, 0.0713, -0.3383, -0.0076, 0.0369, 0.0808, -0.3287, -0.9444
        ], [-0.1731, 0.3085, -0.3543, 0.3626, 0.2884, 0.0878, -0.5686,
            0.8226]])
    assert torch.allclose(expected_bbox_target, bbox_target, atol=1e-4)
    # test decode
    bbox3d_out = boxcoder.decode(bbox_target, points, gt_labels_3d)
    assert torch.allclose(bbox3d_out, gt_bboxes_3d, atol=1e-4)
Tai-Wang's avatar
Tai-Wang committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467


def test_fcos3d_bbox_coder():
    # test a config without priors
    bbox_coder_cfg = dict(
        type='FCOS3DBBoxCoder',
        base_depths=None,
        base_dims=None,
        code_size=7,
        norm_on_bbox=True)
    bbox_coder = build_bbox_coder(bbox_coder_cfg)

    # test decode
    # [2, 7, 1, 1]
    batch_bbox_out = torch.tensor([[[[0.3130]], [[0.7094]], [[0.8743]],
                                    [[0.0570]], [[0.5579]], [[0.1593]],
                                    [[0.4553]]],
                                   [[[0.7758]], [[0.2298]], [[0.3925]],
                                    [[0.6307]], [[0.4377]], [[0.3339]],
                                    [[0.1966]]]])
    batch_scale = nn.ModuleList([Scale(1.0) for _ in range(3)])
    stride = 2
    training = False
    cls_score = torch.randn([2, 2, 1, 1]).sigmoid()
    decode_bbox_out = bbox_coder.decode(batch_bbox_out, batch_scale, stride,
                                        training, cls_score)

    expected_bbox_out = torch.tensor([[[[0.6261]], [[1.4188]], [[2.3971]],
                                       [[1.0586]], [[1.7470]], [[1.1727]],
                                       [[0.4553]]],
                                      [[[1.5516]], [[0.4596]], [[1.4806]],
                                       [[1.8790]], [[1.5492]], [[1.3965]],
                                       [[0.1966]]]])
    assert torch.allclose(decode_bbox_out, expected_bbox_out, atol=1e-3)

    # test a config with priors
    prior_bbox_coder_cfg = dict(
        type='FCOS3DBBoxCoder',
        base_depths=((28., 13.), (25., 12.)),
        base_dims=((2., 3., 1.), (1., 2., 3.)),
        code_size=7,
        norm_on_bbox=True)
    prior_bbox_coder = build_bbox_coder(prior_bbox_coder_cfg)

    # test decode
    batch_bbox_out = torch.tensor([[[[0.3130]], [[0.7094]], [[0.8743]],
                                    [[0.0570]], [[0.5579]], [[0.1593]],
                                    [[0.4553]]],
                                   [[[0.7758]], [[0.2298]], [[0.3925]],
                                    [[0.6307]], [[0.4377]], [[0.3339]],
                                    [[0.1966]]]])
    batch_scale = nn.ModuleList([Scale(1.0) for _ in range(3)])
    stride = 2
    training = False
    cls_score = torch.tensor([[[[0.5811]], [[0.6198]]], [[[0.4889]],
                                                         [[0.8142]]]])
    decode_bbox_out = prior_bbox_coder.decode(batch_bbox_out, batch_scale,
                                              stride, training, cls_score)
    expected_bbox_out = torch.tensor([[[[0.6260]], [[1.4188]], [[35.4916]],
                                       [[1.0587]], [[3.4940]], [[3.5181]],
                                       [[0.4553]]],
                                      [[[1.5516]], [[0.4596]], [[29.7100]],
                                       [[1.8789]], [[3.0983]], [[4.1892]],
                                       [[0.1966]]]])
    assert torch.allclose(decode_bbox_out, expected_bbox_out, atol=1e-3)

    # test decode_yaw
    decode_bbox_out = decode_bbox_out.permute(0, 2, 3, 1).view(-1, 7)
    batch_centers2d = torch.tensor([[100., 150.], [200., 100.]])
    batch_dir_cls = torch.tensor([0., 1.])
    dir_offset = 0.7854
    cam2img = torch.tensor([[700., 0., 450., 0.], [0., 700., 200., 0.],
                            [0., 0., 1., 0.], [0., 0., 0., 1.]])
    decode_bbox_out = prior_bbox_coder.decode_yaw(decode_bbox_out,
                                                  batch_centers2d,
                                                  batch_dir_cls, dir_offset,
                                                  cam2img)
    expected_bbox_out = torch.tensor(
        [[0.6260, 1.4188, 35.4916, 1.0587, 3.4940, 3.5181, 3.1332],
         [1.5516, 0.4596, 29.7100, 1.8789, 3.0983, 4.1892, 6.1368]])
    assert torch.allclose(decode_bbox_out, expected_bbox_out, atol=1e-3)