create_data.py 7.98 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import argparse
zhangwenwei's avatar
zhangwenwei committed
2
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
3

zhangwenwei's avatar
zhangwenwei committed
4
5
6
7
from tools.data_converter import indoor_converter as indoor
from tools.data_converter import kitti_converter as kitti
from tools.data_converter import lyft_converter as lyft_converter
from tools.data_converter import nuscenes_converter as nuscenes_converter
zhangwenwei's avatar
zhangwenwei committed
8
9
10
11
from tools.data_converter.create_gt_database import create_groundtruth_database


def kitti_data_prep(root_path, info_prefix, version, out_dir):
wangtai's avatar
wangtai committed
12
13
14
15
16
17
18
19
20
21
22
    """Prepare data related to Kitti dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        out_dir (str): Output directory of the groundtruth database info.
    """
zhangwenwei's avatar
zhangwenwei committed
23
24
25
26
27
28
    kitti.create_kitti_info_file(root_path, info_prefix)
    kitti.create_reduced_point_cloud(root_path, info_prefix)
    create_groundtruth_database(
        'KittiDataset',
        root_path,
        info_prefix,
wangtai's avatar
wangtai committed
29
        f'{out_dir}/{info_prefix}_infos_train.pkl',
zhangwenwei's avatar
zhangwenwei committed
30
31
32
33
34
35
36
37
38
39
40
        relative_path=False,
        mask_anno_path='instances_train.json',
        with_mask=(version == 'mask'))


def nuscenes_data_prep(root_path,
                       info_prefix,
                       version,
                       dataset_name,
                       out_dir,
                       max_sweeps=10):
wangtai's avatar
wangtai committed
41
42
43
44
45
46
47
48
49
50
51
52
53
    """Prepare data related to nuScenes dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        dataset_name (str): The dataset class name.
        out_dir (str): Output directory of the groundtruth database info.
        max_sweeps (int): Number of input consecutive frames. Default: 10
    """
zhangwenwei's avatar
zhangwenwei committed
54
55
56
57
58
59
    nuscenes_converter.create_nuscenes_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

    if version == 'v1.0-test':
        return

wangtai's avatar
wangtai committed
60
61
    info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl')
zhangwenwei's avatar
zhangwenwei committed
62
63
64
65
    nuscenes_converter.export_2d_annotation(
        root_path, info_train_path, version=version)
    nuscenes_converter.export_2d_annotation(
        root_path, info_val_path, version=version)
wangtai's avatar
wangtai committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    create_groundtruth_database(dataset_name, root_path, info_prefix,
                                f'{out_dir}/{info_prefix}_infos_train.pkl')


def lyft_data_prep(root_path,
                   info_prefix,
                   version,
                   dataset_name,
                   out_dir,
                   max_sweeps=10):
    """Prepare data related to Lyft dataset.

    Related data consists of '.pkl' files recording basic infos,
    and 2D annotations.
    Although the ground truth database is not used in Lyft, it can also be
    generated like nuScenes.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        dataset_name (str): The dataset class name.
        out_dir (str): Output directory of the groundtruth database info.
            Not used here if the groundtruth database is not generated.
        max_sweeps (int): Number of input consecutive frames. Default: 10
    """
    lyft_converter.create_lyft_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

    if version == 'v1.01-test':
        return

    train_info_name = f'{info_prefix}_infos_train'
    val_info_name = f'{info_prefix}_infos_val'

    info_train_path = osp.join(root_path, f'{train_info_name}.pkl')
    info_val_path = osp.join(root_path, f'{val_info_name}.pkl')

    lyft_converter.export_2d_annotation(
        root_path, info_train_path, version=version)
    lyft_converter.export_2d_annotation(
        root_path, info_val_path, version=version)
zhangwenwei's avatar
zhangwenwei committed
108
109


liyinhao's avatar
liyinhao committed
110
def scannet_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
111
112
113
114
115
116
117
118
    """Prepare the info file for scannet dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
119
120
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
121
122


liyinhao's avatar
liyinhao committed
123
def sunrgbd_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
124
125
126
127
128
129
130
131
    """Prepare the info file for sunrgbd dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
132
133
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
134
135


zhangwenwei's avatar
zhangwenwei committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
parser = argparse.ArgumentParser(description='Data converter arg parser')
parser.add_argument('dataset', metavar='kitti', help='name of the dataset')
parser.add_argument(
    '--root-path',
    type=str,
    default='./data/kitti',
    help='specify the root path of dataset')
parser.add_argument(
    '--version',
    type=str,
    default='v1.0',
    required=False,
    help='specify the dataset version, no need for kitti')
parser.add_argument(
    '--max-sweeps',
    type=int,
    default=10,
    required=False,
    help='specify sweeps of lidar per example')
parser.add_argument(
    '--out-dir',
    type=str,
    default='./data/kitti',
    required='False',
    help='name of info pkl')
parser.add_argument('--extra-tag', type=str, default='kitti')
liyinhao's avatar
liyinhao committed
162
163
parser.add_argument(
    '--workers', type=int, default=4, help='number of threads to be used')
zhangwenwei's avatar
zhangwenwei committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
args = parser.parse_args()

if __name__ == '__main__':
    if args.dataset == 'kitti':
        kitti_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
            out_dir=args.out_dir)
    elif args.dataset == 'nuscenes' and args.version != 'v1.0-mini':
        train_version = f'{args.version}-trainval'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
    elif args.dataset == 'nuscenes' and args.version == 'v1.0-mini':
        train_version = f'{args.version}'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
wangtai's avatar
wangtai committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    elif args.dataset == 'lyft':
        train_version = f'{args.version}-train'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='LyftDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            dataset_name='LyftDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
216
217
218
219
    elif args.dataset == 'scannet':
        scannet_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
220
221
            out_dir=args.out_dir,
            workers=args.workers)
222
223
224
225
    elif args.dataset == 'sunrgbd':
        sunrgbd_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
226
227
            out_dir=args.out_dir,
            workers=args.workers)