nuscenes_dataset.py 18.2 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import mmcv
import numpy as np
import pyquaternion
zhangwenwei's avatar
zhangwenwei committed
4
import tempfile
zhangwenwei's avatar
zhangwenwei committed
5
from nuscenes.utils.data_classes import Box as NuScenesBox
zhangwenwei's avatar
zhangwenwei committed
6
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
7
8

from mmdet.datasets import DATASETS
liyinhao's avatar
liyinhao committed
9
10
from ..core import show_result
from ..core.bbox import Box3DMode, LiDARInstance3DBoxes
zhangwenwei's avatar
zhangwenwei committed
11
from .custom_3d import Custom3DDataset
zhangwenwei's avatar
zhangwenwei committed
12
13


14
@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
15
class NuScenesDataset(Custom3DDataset):
zhangwenwei's avatar
zhangwenwei committed
16
    """NuScenes Dataset.
wangtai's avatar
wangtai committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

    This class serves as the API for experiments on the NuScenes Dataset.

    Please refer to `<https://www.nuscenes.org/download>`_for data
    downloading. It is recommended to symlink the dataset root to
    $MMDETECTION3D/data and organize them as the doc shows.

    Args:
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        data_root (str): Path of dataset root.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        load_interval (int, optional): Interval of loading the dataset. It is
            used to uniformly sample the dataset. Defaults to 1.
        with_velocity (bool, optional): Whether include velocity prediction
            into the experiments. Defaults to True.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'LiDAR' in this dataset. Available options includes

            - 'LiDAR': box in LiDAR coordinates
            - 'Depth': box in depth coordinates, usually for indoor dataset
            - 'Camera': box in camera coordinates
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
        eval_version (bool, optional): Configuration version of evaluation.
            Defaults to  'detection_cvpr_2019'.
    """
zhangwenwei's avatar
zhangwenwei committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    NameMapping = {
        'movable_object.barrier': 'barrier',
        'vehicle.bicycle': 'bicycle',
        'vehicle.bus.bendy': 'bus',
        'vehicle.bus.rigid': 'bus',
        'vehicle.car': 'car',
        'vehicle.construction': 'construction_vehicle',
        'vehicle.motorcycle': 'motorcycle',
        'human.pedestrian.adult': 'pedestrian',
        'human.pedestrian.child': 'pedestrian',
        'human.pedestrian.construction_worker': 'pedestrian',
        'human.pedestrian.police_officer': 'pedestrian',
        'movable_object.trafficcone': 'traffic_cone',
        'vehicle.trailer': 'trailer',
        'vehicle.truck': 'truck'
    }
    DefaultAttribute = {
        'car': 'vehicle.parked',
        'pedestrian': 'pedestrian.moving',
        'trailer': 'vehicle.parked',
        'truck': 'vehicle.parked',
        'bus': 'vehicle.moving',
        'motorcycle': 'cycle.without_rider',
        'construction_vehicle': 'vehicle.parked',
        'bicycle': 'cycle.without_rider',
        'barrier': '',
        'traffic_cone': '',
    }
    AttrMapping = {
        'cycle.with_rider': 0,
        'cycle.without_rider': 1,
        'pedestrian.moving': 2,
        'pedestrian.standing': 3,
        'pedestrian.sitting_lying_down': 4,
        'vehicle.moving': 5,
        'vehicle.parked': 6,
        'vehicle.stopped': 7,
    }
    AttrMapping_rev = [
        'cycle.with_rider',
        'cycle.without_rider',
        'pedestrian.moving',
        'pedestrian.standing',
        'pedestrian.sitting_lying_down',
        'vehicle.moving',
        'vehicle.parked',
        'vehicle.stopped',
    ]
    CLASSES = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle',
               'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
               'barrier')

    def __init__(self,
                 ann_file,
                 pipeline=None,
zhangwenwei's avatar
zhangwenwei committed
107
108
                 data_root=None,
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
109
110
111
                 load_interval=1,
                 with_velocity=True,
                 modality=None,
112
113
114
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
                 test_mode=False,
zhangwenwei's avatar
zhangwenwei committed
115
                 eval_version='detection_cvpr_2019'):
zhangwenwei's avatar
zhangwenwei committed
116
        self.load_interval = load_interval
zhangwenwei's avatar
zhangwenwei committed
117
118
119
120
121
122
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
123
124
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
zhangwenwei's avatar
zhangwenwei committed
125
            test_mode=test_mode)
zhangwenwei's avatar
zhangwenwei committed
126
127
128
129
130
131

        self.with_velocity = with_velocity
        self.eval_version = eval_version
        from nuscenes.eval.detection.config import config_factory
        self.eval_detection_configs = config_factory(self.eval_version)

zhangwenwei's avatar
zhangwenwei committed
132
133
        if self.modality is None:
            self.modality = dict(
zhangwenwei's avatar
zhangwenwei committed
134
135
136
137
138
139
140
                use_camera=False,
                use_lidar=True,
                use_radar=False,
                use_map=False,
                use_external=False,
            )

zhangwenwei's avatar
zhangwenwei committed
141
142
143
144
145
146
147
    def load_annotations(self, ann_file):
        data = mmcv.load(ann_file)
        data_infos = list(sorted(data['infos'], key=lambda e: e['timestamp']))
        data_infos = data_infos[::self.load_interval]
        self.metadata = data['metadata']
        self.version = self.metadata['version']
        return data_infos
zhangwenwei's avatar
zhangwenwei committed
148

zhangwenwei's avatar
zhangwenwei committed
149
    def get_data_info(self, index):
zhangwenwei's avatar
zhangwenwei committed
150
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
151

zhangwenwei's avatar
zhangwenwei committed
152
        # standard protocal modified from SECOND.Pytorch
zhangwenwei's avatar
zhangwenwei committed
153
154
        input_dict = dict(
            sample_idx=info['token'],
zhangwenwei's avatar
zhangwenwei committed
155
156
157
            pts_filename=info['lidar_path'],
            sweeps=info['sweeps'],
            timestamp=info['timestamp'] / 1e6,
zhangwenwei's avatar
zhangwenwei committed
158
159
160
161
162
163
        )

        if self.modality['use_camera']:
            image_paths = []
            lidar2img_rts = []
            for cam_type, cam_info in info['cams'].items():
zhangwenwei's avatar
zhangwenwei committed
164
                image_paths.append(cam_info['data_path'])
zhangwenwei's avatar
zhangwenwei committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
                # obtain lidar to image transformation matrix
                lidar2cam_r = np.linalg.inv(cam_info['sensor2lidar_rotation'])
                lidar2cam_t = cam_info[
                    'sensor2lidar_translation'] @ lidar2cam_r.T
                lidar2cam_rt = np.eye(4)
                lidar2cam_rt[:3, :3] = lidar2cam_r.T
                lidar2cam_rt[3, :3] = -lidar2cam_t
                intrinsic = cam_info['cam_intrinsic']
                viewpad = np.eye(4)
                viewpad[:intrinsic.shape[0], :intrinsic.shape[1]] = intrinsic
                lidar2img_rt = (viewpad @ lidar2cam_rt.T)
                lidar2img_rts.append(lidar2img_rt)

            input_dict.update(
                dict(
zhangwenwei's avatar
zhangwenwei committed
180
                    img_filename=image_paths,
zhangwenwei's avatar
zhangwenwei committed
181
182
183
                    lidar2img=lidar2img_rts,
                ))

zhangwenwei's avatar
zhangwenwei committed
184
        if not self.test_mode:
zhangwenwei's avatar
zhangwenwei committed
185
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
186
            input_dict['ann_info'] = annos
zhangwenwei's avatar
zhangwenwei committed
187
188
189
190

        return input_dict

    def get_ann_info(self, index):
zhangwenwei's avatar
zhangwenwei committed
191
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
192
193
194
195
        # filter out bbox containing no points
        mask = info['num_lidar_pts'] > 0
        gt_bboxes_3d = info['gt_boxes'][mask]
        gt_names_3d = info['gt_names'][mask]
zhangwenwei's avatar
zhangwenwei committed
196
197
198
199
200
201
202
        gt_labels_3d = []
        for cat in gt_names_3d:
            if cat in self.CLASSES:
                gt_labels_3d.append(self.CLASSES.index(cat))
            else:
                gt_labels_3d.append(-1)
        gt_labels_3d = np.array(gt_labels_3d)
zhangwenwei's avatar
zhangwenwei committed
203
204
205
206
207
208
209

        if self.with_velocity:
            gt_velocity = info['gt_velocity'][mask]
            nan_mask = np.isnan(gt_velocity[:, 0])
            gt_velocity[nan_mask] = [0.0, 0.0]
            gt_bboxes_3d = np.concatenate([gt_bboxes_3d, gt_velocity], axis=-1)

wangtai's avatar
wangtai committed
210
        # the nuscenes box center is [0.5, 0.5, 0.5], we change it to be
wuyuefeng's avatar
wuyuefeng committed
211
        # the same as KITTI (0.5, 0.5, 0)
zhangwenwei's avatar
zhangwenwei committed
212
213
214
        gt_bboxes_3d = LiDARInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
wuyuefeng's avatar
wuyuefeng committed
215
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)
zhangwenwei's avatar
zhangwenwei committed
216

zhangwenwei's avatar
zhangwenwei committed
217
218
        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
219
            gt_labels_3d=gt_labels_3d,
liyinhao's avatar
liyinhao committed
220
            gt_names=gt_names_3d)
zhangwenwei's avatar
zhangwenwei committed
221
222
223
224
        return anns_results

    def _format_bbox(self, results, jsonfile_prefix=None):
        nusc_annos = {}
zhangwenwei's avatar
zhangwenwei committed
225
        mapped_class_names = self.CLASSES
zhangwenwei's avatar
zhangwenwei committed
226

zhangwenwei's avatar
zhangwenwei committed
227
        print('Start to convert detection format...')
zhangwenwei's avatar
zhangwenwei committed
228
        for sample_id, det in enumerate(mmcv.track_iter_progress(results)):
zhangwenwei's avatar
zhangwenwei committed
229
            annos = []
zhangwenwei's avatar
zhangwenwei committed
230
231
232
233
            boxes = output_to_nusc_box(det)
            sample_token = self.data_infos[sample_id]['token']
            boxes = lidar_nusc_box_to_global(self.data_infos[sample_id], boxes,
                                             mapped_class_names,
zhangwenwei's avatar
zhangwenwei committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
                                             self.eval_detection_configs,
                                             self.eval_version)
            for i, box in enumerate(boxes):
                name = mapped_class_names[box.label]
                if np.sqrt(box.velocity[0]**2 + box.velocity[1]**2) > 0.2:
                    if name in [
                            'car',
                            'construction_vehicle',
                            'bus',
                            'truck',
                            'trailer',
                    ]:
                        attr = 'vehicle.moving'
                    elif name in ['bicycle', 'motorcycle']:
                        attr = 'cycle.with_rider'
                    else:
                        attr = NuScenesDataset.DefaultAttribute[name]
                else:
                    if name in ['pedestrian']:
                        attr = 'pedestrian.standing'
                    elif name in ['bus']:
                        attr = 'vehicle.stopped'
                    else:
                        attr = NuScenesDataset.DefaultAttribute[name]

                nusc_anno = dict(
zhangwenwei's avatar
zhangwenwei committed
260
                    sample_token=sample_token,
zhangwenwei's avatar
zhangwenwei committed
261
262
263
264
265
266
267
268
                    translation=box.center.tolist(),
                    size=box.wlh.tolist(),
                    rotation=box.orientation.elements.tolist(),
                    velocity=box.velocity[:2].tolist(),
                    detection_name=name,
                    detection_score=box.score,
                    attribute_name=attr)
                annos.append(nusc_anno)
zhangwenwei's avatar
zhangwenwei committed
269
            nusc_annos[sample_token] = annos
zhangwenwei's avatar
zhangwenwei committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        nusc_submissions = {
            'meta': self.modality,
            'results': nusc_annos,
        }

        mmcv.mkdir_or_exist(jsonfile_prefix)
        res_path = osp.join(jsonfile_prefix, 'results_nusc.json')
        print('Results writes to', res_path)
        mmcv.dump(nusc_submissions, res_path)
        return res_path

    def _evaluate_single(self,
                         result_path,
                         logger=None,
                         metric='bbox',
                         result_name='pts_bbox'):
        from nuscenes import NuScenes
        from nuscenes.eval.detection.evaluate import NuScenesEval

        output_dir = osp.join(*osp.split(result_path)[:-1])
        nusc = NuScenes(
            version=self.version, dataroot=self.data_root, verbose=False)
        eval_set_map = {
            'v1.0-mini': 'mini_train',
            'v1.0-trainval': 'val',
        }
        nusc_eval = NuScenesEval(
            nusc,
            config=self.eval_detection_configs,
            result_path=result_path,
            eval_set=eval_set_map[self.version],
            output_dir=output_dir,
            verbose=False)
        nusc_eval.main(render_curves=False)

        # record metrics
        metrics = mmcv.load(osp.join(output_dir, 'metrics_summary.json'))
        detail = dict()
wangtai's avatar
wangtai committed
308
        metric_prefix = f'{result_name}_NuScenes'
zhangwenwei's avatar
zhangwenwei committed
309
        for name in self.CLASSES:
zhangwenwei's avatar
zhangwenwei committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
            for k, v in metrics['label_aps'][name].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}_AP_dist_{}'.format(metric_prefix, name, k)] = val
            for k, v in metrics['label_tp_errors'][name].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}_{}'.format(metric_prefix, name, k)] = val

        detail['{}/NDS'.format(metric_prefix)] = metrics['nd_score']
        detail['{}/mAP'.format(metric_prefix)] = metrics['mean_ap']
        return detail

    def format_results(self, results, jsonfile_prefix=None):
        """Format the results to json (standard format for COCO evaluation).

        Args:
wangtai's avatar
wangtai committed
325
            results (list[dict]): Testing results of the dataset.
zhangwenwei's avatar
zhangwenwei committed
326
327
328
329
330
            jsonfile_prefix (str | None): The prefix of json files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
wangtai's avatar
wangtai committed
331
332
333
            tuple (dict, str): result_files is a dict containing the json
                filepaths, tmp_dir is the temporal directory created for
                saving json files when jsonfile_prefix is not specified.
zhangwenwei's avatar
zhangwenwei committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        """
        assert isinstance(results, list), 'results must be a list'
        assert len(results) == len(self), (
            'The length of results is not equal to the dataset len: {} != {}'.
            format(len(results), len(self)))

        if jsonfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            jsonfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None

        if not isinstance(results[0], dict):
            result_files = self._format_bbox(results, jsonfile_prefix)
        else:
            result_files = dict()
            for name in results[0]:
zhangwenwei's avatar
zhangwenwei committed
351
                print(f'\nFormating bboxes of {name}')
zhangwenwei's avatar
zhangwenwei committed
352
353
354
355
356
357
358
359
360
361
362
                results_ = [out[name] for out in results]
                tmp_file_ = osp.join(jsonfile_prefix, name)
                result_files.update(
                    {name: self._format_bbox(results_, tmp_file_)})
        return result_files, tmp_dir

    def evaluate(self,
                 results,
                 metric='bbox',
                 logger=None,
                 jsonfile_prefix=None,
liyinhao's avatar
liyinhao committed
363
364
365
                 result_names=['pts_bbox'],
                 show=False,
                 out_dir=None):
zhangwenwei's avatar
zhangwenwei committed
366
367
368
        """Evaluation in nuScenes protocol.

        Args:
wangtai's avatar
wangtai committed
369
            results (list[dict]): Testing results of the dataset.
zhangwenwei's avatar
zhangwenwei committed
370
371
372
373
374
375
            metric (str | list[str]): Metrics to be evaluated.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            jsonfile_prefix (str | None): The prefix of json files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
liyinhao's avatar
liyinhao committed
376
377
378
379
            show (bool): Whether to visualize.
                Default: False.
            out_dir (str): Path to save the visualization results.
                Default: None.
zhangwenwei's avatar
zhangwenwei committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

        Returns:
            dict[str: float]
        """
        result_files, tmp_dir = self.format_results(results, jsonfile_prefix)

        if isinstance(result_files, dict):
            results_dict = dict()
            for name in result_names:
                print('Evaluating bboxes of {}'.format(name))
                ret_dict = self._evaluate_single(result_files[name])
            results_dict.update(ret_dict)
        elif isinstance(result_files, str):
            results_dict = self._evaluate_single(result_files)

        if tmp_dir is not None:
            tmp_dir.cleanup()
liyinhao's avatar
liyinhao committed
397
398
399

        if show:
            self.show(results, out_dir)
zhangwenwei's avatar
zhangwenwei committed
400
401
        return results_dict

liyinhao's avatar
liyinhao committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
    def show(self, results, out_dir):
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['lidar_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
            points = np.fromfile(pts_path, dtype=np.float32).reshape(-1, 4)
            points = points[..., [1, 0, 2]]
            points[..., 0] *= -1
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor
            gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR,
                                          Box3DMode.DEPTH)
            gt_bboxes[..., 2] += gt_bboxes[..., 5] / 2
            pred_bboxes = result['boxes_3d'].tensor.numpy()
            pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR,
                                            Box3DMode.DEPTH)
            pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
            show_result(points, gt_bboxes, pred_bboxes, out_dir, file_name)
        print(results)

zhangwenwei's avatar
zhangwenwei committed
421
422

def output_to_nusc_box(detection):
423
    box3d = detection['boxes_3d']
zhangwenwei's avatar
zhangwenwei committed
424
425
    scores = detection['scores_3d'].numpy()
    labels = detection['labels_3d'].numpy()
426
427
428
429

    box_gravity_center = box3d.gravity_center.numpy()
    box_dims = box3d.dims.numpy()
    box_yaw = box3d.yaw.numpy()
zhangwenwei's avatar
zhangwenwei committed
430
431
    # TODO: check whether this is necessary
    # with dir_offset & dir_limit in the head
432
433
    box_yaw = -box_yaw - np.pi / 2

zhangwenwei's avatar
zhangwenwei committed
434
    box_list = []
435
436
437
    for i in range(len(box3d)):
        quat = pyquaternion.Quaternion(axis=[0, 0, 1], radians=box_yaw[i])
        velocity = (*box3d.tensor[i, 7:9], 0.0)
zhangwenwei's avatar
zhangwenwei committed
438
439
440
441
442
        # velo_val = np.linalg.norm(box3d[i, 7:9])
        # velo_ori = box3d[i, 6]
        # velocity = (
        # velo_val * np.cos(velo_ori), velo_val * np.sin(velo_ori), 0.0)
        box = NuScenesBox(
443
444
            box_gravity_center[i],
            box_dims[i],
zhangwenwei's avatar
zhangwenwei committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
            quat,
            label=labels[i],
            score=scores[i],
            velocity=velocity)
        box_list.append(box)
    return box_list


def lidar_nusc_box_to_global(info,
                             boxes,
                             classes,
                             eval_configs,
                             eval_version='detection_cvpr_2019'):
    box_list = []
    for box in boxes:
        # Move box to ego vehicle coord system
        box.rotate(pyquaternion.Quaternion(info['lidar2ego_rotation']))
        box.translate(np.array(info['lidar2ego_translation']))
        # filter det in ego.
        cls_range_map = eval_configs.class_range
        radius = np.linalg.norm(box.center[:2], 2)
        det_range = cls_range_map[classes[box.label]]
        if radius > det_range:
            continue
        # Move box to global coord system
        box.rotate(pyquaternion.Quaternion(info['ego2global_rotation']))
        box.translate(np.array(info['ego2global_translation']))
        box_list.append(box)
    return box_list