load_scannet_data.py 6.22 KB
Newer Older
1
2
# Modified from
# https://github.com/facebookresearch/votenet/blob/master/scannet/load_scannet_data.py
3
4
5
6
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
7
"""Load Scannet scenes with vertices and ground truth labels
liyinhao's avatar
liyinhao committed
8
9
for semantic and instance segmentations
"""
10

liyinhao's avatar
liyinhao committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
import inspect
import json
import os

import numpy as np
import scannet_utils

currentdir = os.path.dirname(
    os.path.abspath(inspect.getfile(inspect.currentframe())))


def read_aggregation(filename):
    assert os.path.isfile(filename)
    object_id_to_segs = {}
    label_to_segs = {}
    with open(filename) as f:
        data = json.load(f)
        num_objects = len(data['segGroups'])
        for i in range(num_objects):
            object_id = data['segGroups'][i][
                'objectId'] + 1  # instance ids should be 1-indexed
            label = data['segGroups'][i]['label']
            segs = data['segGroups'][i]['segments']
            object_id_to_segs[object_id] = segs
            if label in label_to_segs:
                label_to_segs[label].extend(segs)
            else:
                label_to_segs[label] = segs
    return object_id_to_segs, label_to_segs


def read_segmentation(filename):
    assert os.path.isfile(filename)
    seg_to_verts = {}
    with open(filename) as f:
        data = json.load(f)
        num_verts = len(data['segIndices'])
        for i in range(num_verts):
            seg_id = data['segIndices'][i]
            if seg_id in seg_to_verts:
                seg_to_verts[seg_id].append(i)
            else:
                seg_to_verts[seg_id] = [i]
    return seg_to_verts, num_verts


def export(mesh_file,
           agg_file,
           seg_file,
           meta_file,
           label_map_file,
           output_file=None):
64
65
66
67
68
69
70
71
72
73
74
    """Export original files to vert, ins_label, sem_label and bbox file.

    Args:
        mesh_file(str): Path of the mesh_file.
        agg_file(str): Path of the agg_file.
        seg_file(str): Path of the seg_file.
        meta_file(str): Path of the meta_file.
        label_map_file(str): Path of the label_map_file.
        output_file(str): Path of the output folder.
            Default: None.

liyinhao's avatar
liyinhao committed
75
    It returns a tuple, which containts the the following things:
76
77
78
79
80
        ndarray: Vertices of points data.
        ndarray: Indexes of label.
        ndarray: Indexes of instance.
        ndarray: Instance bboxes.
        dict: Map from object_id to label_id.
liyinhao's avatar
liyinhao committed
81
    """
82

liyinhao's avatar
liyinhao committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    label_map = scannet_utils.read_label_mapping(
        label_map_file, label_from='raw_category', label_to='nyu40id')
    mesh_vertices = scannet_utils.read_mesh_vertices_rgb(mesh_file)

    # Load scene axis alignment matrix
    lines = open(meta_file).readlines()
    for line in lines:
        if 'axisAlignment' in line:
            axis_align_matrix = [
                float(x)
                for x in line.rstrip().strip('axisAlignment = ').split(' ')
            ]
            break
    axis_align_matrix = np.array(axis_align_matrix).reshape((4, 4))
    pts = np.ones((mesh_vertices.shape[0], 4))
    pts[:, 0:3] = mesh_vertices[:, 0:3]
    pts = np.dot(pts, axis_align_matrix.transpose())  # Nx4
    mesh_vertices[:, 0:3] = pts[:, 0:3]

    # Load semantic and instance labels
    object_id_to_segs, label_to_segs = read_aggregation(agg_file)
    seg_to_verts, num_verts = read_segmentation(seg_file)
105
    label_ids = np.zeros(shape=(num_verts), dtype=np.uint32)
liyinhao's avatar
liyinhao committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    object_id_to_label_id = {}
    for label, segs in label_to_segs.items():
        label_id = label_map[label]
        for seg in segs:
            verts = seg_to_verts[seg]
            label_ids[verts] = label_id
    instance_ids = np.zeros(
        shape=(num_verts), dtype=np.uint32)  # 0: unannotated
    num_instances = len(np.unique(list(object_id_to_segs.keys())))
    for object_id, segs in object_id_to_segs.items():
        for seg in segs:
            verts = seg_to_verts[seg]
            instance_ids[verts] = object_id
            if object_id not in object_id_to_label_id:
                object_id_to_label_id[object_id] = label_ids[verts][0]
    instance_bboxes = np.zeros((num_instances, 7))
    for obj_id in object_id_to_segs:
        label_id = object_id_to_label_id[obj_id]
        obj_pc = mesh_vertices[instance_ids == obj_id, 0:3]
        if len(obj_pc) == 0:
            continue
        xmin = np.min(obj_pc[:, 0])
        ymin = np.min(obj_pc[:, 1])
        zmin = np.min(obj_pc[:, 2])
        xmax = np.max(obj_pc[:, 0])
        ymax = np.max(obj_pc[:, 1])
        zmax = np.max(obj_pc[:, 2])
        bbox = np.array([(xmin + xmax) / 2, (ymin + ymax) / 2,
                         (zmin + zmax) / 2, xmax - xmin, ymax - ymin,
                         zmax - zmin, label_id])
        # NOTE: this assumes obj_id is in 1,2,3,.,,,.NUM_INSTANCES
        instance_bboxes[obj_id - 1, :] = bbox

    if output_file is not None:
        np.save(output_file + '_vert.npy', mesh_vertices)
        np.save(output_file + '_sem_label.npy', label_ids)
        np.save(output_file + '_ins_label.npy', instance_ids)
        np.save(output_file + '_bbox.npy', instance_bboxes)

    return mesh_vertices, label_ids, instance_ids,\
        instance_bboxes, object_id_to_label_id


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--scan_path',
        required=True,
        help='path to scannet scene (e.g., data/ScanNet/v2/scene0000_00')
    parser.add_argument('--output_file', required=True, help='output file')
    parser.add_argument(
        '--label_map_file',
        required=True,
        help='path to scannetv2-labels.combined.tsv')
    opt = parser.parse_args()

    scan_name = os.path.split(opt.scan_path)[-1]
    mesh_file = os.path.join(opt.scan_path, scan_name + '_vh_clean_2.ply')
    agg_file = os.path.join(opt.scan_path, scan_name + '.aggregation.json')
    seg_file = os.path.join(opt.scan_path,
                            scan_name + '_vh_clean_2.0.010000.segs.json')
    meta_file = os.path.join(
        opt.scan_path, scan_name +
        '.txt')  # includes axisAlignment info for the train set scans.
    export(mesh_file, agg_file, seg_file, meta_file, opt.label_map_file,
           opt.output_file)


if __name__ == '__main__':
    main()