# Modified from # https://github.com/facebookresearch/votenet/blob/master/scannet/load_scannet_data.py # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Load Scannet scenes with vertices and ground truth labels for semantic and instance segmentations """ import argparse import inspect import json import os import numpy as np import scannet_utils currentdir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) def read_aggregation(filename): assert os.path.isfile(filename) object_id_to_segs = {} label_to_segs = {} with open(filename) as f: data = json.load(f) num_objects = len(data['segGroups']) for i in range(num_objects): object_id = data['segGroups'][i][ 'objectId'] + 1 # instance ids should be 1-indexed label = data['segGroups'][i]['label'] segs = data['segGroups'][i]['segments'] object_id_to_segs[object_id] = segs if label in label_to_segs: label_to_segs[label].extend(segs) else: label_to_segs[label] = segs return object_id_to_segs, label_to_segs def read_segmentation(filename): assert os.path.isfile(filename) seg_to_verts = {} with open(filename) as f: data = json.load(f) num_verts = len(data['segIndices']) for i in range(num_verts): seg_id = data['segIndices'][i] if seg_id in seg_to_verts: seg_to_verts[seg_id].append(i) else: seg_to_verts[seg_id] = [i] return seg_to_verts, num_verts def export(mesh_file, agg_file, seg_file, meta_file, label_map_file, output_file=None): """Export original files to vert, ins_label, sem_label and bbox file. Args: mesh_file(str): Path of the mesh_file. agg_file(str): Path of the agg_file. seg_file(str): Path of the seg_file. meta_file(str): Path of the meta_file. label_map_file(str): Path of the label_map_file. output_file(str): Path of the output folder. Default: None. It returns a tuple, which containts the the following things: ndarray: Vertices of points data. ndarray: Indexes of label. ndarray: Indexes of instance. ndarray: Instance bboxes. dict: Map from object_id to label_id. """ label_map = scannet_utils.read_label_mapping( label_map_file, label_from='raw_category', label_to='nyu40id') mesh_vertices = scannet_utils.read_mesh_vertices_rgb(mesh_file) # Load scene axis alignment matrix lines = open(meta_file).readlines() for line in lines: if 'axisAlignment' in line: axis_align_matrix = [ float(x) for x in line.rstrip().strip('axisAlignment = ').split(' ') ] break axis_align_matrix = np.array(axis_align_matrix).reshape((4, 4)) pts = np.ones((mesh_vertices.shape[0], 4)) pts[:, 0:3] = mesh_vertices[:, 0:3] pts = np.dot(pts, axis_align_matrix.transpose()) # Nx4 mesh_vertices[:, 0:3] = pts[:, 0:3] # Load semantic and instance labels object_id_to_segs, label_to_segs = read_aggregation(agg_file) seg_to_verts, num_verts = read_segmentation(seg_file) label_ids = np.zeros(shape=(num_verts), dtype=np.uint32) object_id_to_label_id = {} for label, segs in label_to_segs.items(): label_id = label_map[label] for seg in segs: verts = seg_to_verts[seg] label_ids[verts] = label_id instance_ids = np.zeros( shape=(num_verts), dtype=np.uint32) # 0: unannotated num_instances = len(np.unique(list(object_id_to_segs.keys()))) for object_id, segs in object_id_to_segs.items(): for seg in segs: verts = seg_to_verts[seg] instance_ids[verts] = object_id if object_id not in object_id_to_label_id: object_id_to_label_id[object_id] = label_ids[verts][0] instance_bboxes = np.zeros((num_instances, 7)) for obj_id in object_id_to_segs: label_id = object_id_to_label_id[obj_id] obj_pc = mesh_vertices[instance_ids == obj_id, 0:3] if len(obj_pc) == 0: continue xmin = np.min(obj_pc[:, 0]) ymin = np.min(obj_pc[:, 1]) zmin = np.min(obj_pc[:, 2]) xmax = np.max(obj_pc[:, 0]) ymax = np.max(obj_pc[:, 1]) zmax = np.max(obj_pc[:, 2]) bbox = np.array([(xmin + xmax) / 2, (ymin + ymax) / 2, (zmin + zmax) / 2, xmax - xmin, ymax - ymin, zmax - zmin, label_id]) # NOTE: this assumes obj_id is in 1,2,3,.,,,.NUM_INSTANCES instance_bboxes[obj_id - 1, :] = bbox if output_file is not None: np.save(output_file + '_vert.npy', mesh_vertices) np.save(output_file + '_sem_label.npy', label_ids) np.save(output_file + '_ins_label.npy', instance_ids) np.save(output_file + '_bbox.npy', instance_bboxes) return mesh_vertices, label_ids, instance_ids,\ instance_bboxes, object_id_to_label_id def main(): parser = argparse.ArgumentParser() parser.add_argument( '--scan_path', required=True, help='path to scannet scene (e.g., data/ScanNet/v2/scene0000_00') parser.add_argument('--output_file', required=True, help='output file') parser.add_argument( '--label_map_file', required=True, help='path to scannetv2-labels.combined.tsv') opt = parser.parse_args() scan_name = os.path.split(opt.scan_path)[-1] mesh_file = os.path.join(opt.scan_path, scan_name + '_vh_clean_2.ply') agg_file = os.path.join(opt.scan_path, scan_name + '.aggregation.json') seg_file = os.path.join(opt.scan_path, scan_name + '_vh_clean_2.0.010000.segs.json') meta_file = os.path.join( opt.scan_path, scan_name + '.txt') # includes axisAlignment info for the train set scans. export(mesh_file, agg_file, seg_file, meta_file, opt.label_map_file, opt.output_file) if __name__ == '__main__': main()