formating.py 11.2 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
3
4
import numpy as np
from mmcv.parallel import DataContainer as DC

5
from mmdet3d.core.bbox import BaseInstance3DBoxes
6
from mmdet3d.core.points import BasePoints
zhangwenwei's avatar
zhangwenwei committed
7
from mmdet.datasets.pipelines import to_tensor
8
from ..builder import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
9
10


11
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
12
13
14
15
16
17
18
19
20
21
22
23
24
class DefaultFormatBundle(object):
    """Default formatting bundle.

    It simplifies the pipeline of formatting common fields, including "img",
    "proposals", "gt_bboxes", "gt_labels", "gt_masks" and "gt_semantic_seg".
    These fields are formatted as follows.

    - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True)
    - proposals: (1)to tensor, (2)to DataContainer
    - gt_bboxes: (1)to tensor, (2)to DataContainer
    - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer
    - gt_labels: (1)to tensor, (2)to DataContainer
    - gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True)
25
    - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor,
zhangwenwei's avatar
zhangwenwei committed
26
27
28
29
30
31
32
                       (3)to DataContainer (stack=True)
    """

    def __init__(self, ):
        return

    def __call__(self, results):
33
34
35
36
37
38
39
40
41
        """Call function to transform and format common fields in results.

        Args:
            results (dict): Result dict contains the data to convert.

        Returns:
            dict: The result dict contains the data that is formatted with
                default bundle.
        """
zhangwenwei's avatar
zhangwenwei committed
42
43
44
45
46
47
48
49
50
51
        if 'img' in results:
            if isinstance(results['img'], list):
                # process multiple imgs in single frame
                imgs = [img.transpose(2, 0, 1) for img in results['img']]
                imgs = np.ascontiguousarray(np.stack(imgs, axis=0))
                results['img'] = DC(to_tensor(imgs), stack=True)
            else:
                img = np.ascontiguousarray(results['img'].transpose(2, 0, 1))
                results['img'] = DC(to_tensor(img), stack=True)
        for key in [
52
                'proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels',
53
54
                'gt_labels_3d', 'attr_labels', 'pts_instance_mask',
                'pts_semantic_mask', 'centers2d', 'depths'
zhangwenwei's avatar
zhangwenwei committed
55
56
57
58
59
60
61
        ]:
            if key not in results:
                continue
            if isinstance(results[key], list):
                results[key] = DC([to_tensor(res) for res in results[key]])
            else:
                results[key] = DC(to_tensor(results[key]))
62
63
64
65
66
67
68
69
        if 'gt_bboxes_3d' in results:
            if isinstance(results['gt_bboxes_3d'], BaseInstance3DBoxes):
                results['gt_bboxes_3d'] = DC(
                    results['gt_bboxes_3d'], cpu_only=True)
            else:
                results['gt_bboxes_3d'] = DC(
                    to_tensor(results['gt_bboxes_3d']))

zhangwenwei's avatar
zhangwenwei committed
70
71
72
73
74
        if 'gt_masks' in results:
            results['gt_masks'] = DC(results['gt_masks'], cpu_only=True)
        if 'gt_semantic_seg' in results:
            results['gt_semantic_seg'] = DC(
                to_tensor(results['gt_semantic_seg'][None, ...]), stack=True)
75

zhangwenwei's avatar
zhangwenwei committed
76
77
78
79
80
81
        return results

    def __repr__(self):
        return self.__class__.__name__


82
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
83
class Collect3D(object):
wangtai's avatar
wangtai committed
84
85
86
87
88
89
90
91
92
    """Collect data from the loader relevant to the specific task.

    This is usually the last stage of the data loader pipeline. Typically keys
    is set to some subset of "img", "proposals", "gt_bboxes",
    "gt_bboxes_ignore", "gt_labels", and/or "gt_masks".

    The "img_meta" item is always populated.  The contents of the "img_meta"
    dictionary depends on "meta_keys". By default this includes:

93
94
        - 'img_shape': shape of the image input to the network as a tuple
            (h, w, c).  Note that images may be zero padded on the
wangtai's avatar
wangtai committed
95
            bottom/right if the batch tensor is larger than this shape.
zhangwenwei's avatar
zhangwenwei committed
96
97
98
99
100
101
        - 'scale_factor': a float indicating the preprocessing scale
        - 'flip': a boolean indicating if image flip transform was used
        - 'filename': path to the image file
        - 'ori_shape': original shape of the image as a tuple (h, w, c)
        - 'pad_shape': image shape after padding
        - 'lidar2img': transform from lidar to image
102
        - 'depth2img': transform from depth to image
103
        - 'cam2img': transform from camera to image
104
        - 'pcd_horizontal_flip': a boolean indicating if point cloud is
wangtai's avatar
wangtai committed
105
            flipped horizontally
106
        - 'pcd_vertical_flip': a boolean indicating if point cloud is
wangtai's avatar
wangtai committed
107
108
109
110
            flipped vertically
        - 'box_mode_3d': 3D box mode
        - 'box_type_3d': 3D box type
        - 'img_norm_cfg': a dict of normalization information:
zhangwenwei's avatar
zhangwenwei committed
111
112
113
            - mean: per channel mean subtraction
            - std: per channel std divisor
            - to_rgb: bool indicating if bgr was converted to rgb
wangtai's avatar
wangtai committed
114
115
116
117
118
119
120
121
122
123
        - 'pcd_trans': point cloud transformations
        - 'sample_idx': sample index
        - 'pcd_scale_factor': point cloud scale factor
        - 'pcd_rotation': rotation applied to point cloud
        - 'pts_filename': path to point cloud file.

    Args:
        keys (Sequence[str]): Keys of results to be collected in ``data``.
        meta_keys (Sequence[str], optional): Meta keys to be converted to
            ``mmcv.DataContainer`` and collected in ``data[img_metas]``.
124
125
126
127
            Default: ('filename', 'ori_shape', 'img_shape', 'lidar2img',
            'depth2img', 'cam2img', 'pad_shape', 'scale_factor', 'flip',
            'pcd_horizontal_flip', 'pcd_vertical_flip', 'box_mode_3d',
            'box_type_3d', 'img_norm_cfg', 'pcd_trans',
zhangwenwei's avatar
zhangwenwei committed
128
            'sample_idx', 'pcd_scale_factor', 'pcd_rotation', 'pts_filename')
wangtai's avatar
wangtai committed
129
    """
zhangwenwei's avatar
zhangwenwei committed
130

131
132
133
134
135
136
137
138
    def __init__(
        self,
        keys,
        meta_keys=('filename', 'ori_shape', 'img_shape', 'lidar2img',
                   'depth2img', 'cam2img', 'pad_shape', 'scale_factor', 'flip',
                   'pcd_horizontal_flip', 'pcd_vertical_flip', 'box_mode_3d',
                   'box_type_3d', 'img_norm_cfg', 'pcd_trans', 'sample_idx',
                   'pcd_scale_factor', 'pcd_rotation', 'pcd_rotation_angle',
139
140
                   'pts_filename', 'transformation_3d_flow', 'trans_mat',
                   'affine_aug')):
zhangwenwei's avatar
zhangwenwei committed
141
142
143
144
        self.keys = keys
        self.meta_keys = meta_keys

    def __call__(self, results):
145
146
147
148
149
150
151
152
153
154
155
        """Call function to collect keys in results. The keys in ``meta_keys``
        will be converted to :obj:`mmcv.DataContainer`.

        Args:
            results (dict): Result dict contains the data to collect.

        Returns:
            dict: The result dict contains the following keys
                - keys in ``self.keys``
                - ``img_metas``
        """
zhangwenwei's avatar
zhangwenwei committed
156
        data = {}
zhangwenwei's avatar
zhangwenwei committed
157
        img_metas = {}
zhangwenwei's avatar
zhangwenwei committed
158
159
        for key in self.meta_keys:
            if key in results:
zhangwenwei's avatar
zhangwenwei committed
160
                img_metas[key] = results[key]
161

zhangwenwei's avatar
zhangwenwei committed
162
        data['img_metas'] = DC(img_metas, cpu_only=True)
zhangwenwei's avatar
zhangwenwei committed
163
164
165
166
167
        for key in self.keys:
            data[key] = results[key]
        return data

    def __repr__(self):
168
        """str: Return a string that describes the module."""
169
170
        return self.__class__.__name__ + \
            f'(keys={self.keys}, meta_keys={self.meta_keys})'
zhangwenwei's avatar
zhangwenwei committed
171
172


173
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
class DefaultFormatBundle3D(DefaultFormatBundle):
    """Default formatting bundle.

    It simplifies the pipeline of formatting common fields for voxels,
    including "proposals", "gt_bboxes", "gt_labels", "gt_masks" and
    "gt_semantic_seg".
    These fields are formatted as follows.

    - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True)
    - proposals: (1)to tensor, (2)to DataContainer
    - gt_bboxes: (1)to tensor, (2)to DataContainer
    - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer
    - gt_labels: (1)to tensor, (2)to DataContainer
    """

    def __init__(self, class_names, with_gt=True, with_label=True):
        super(DefaultFormatBundle3D, self).__init__()
        self.class_names = class_names
        self.with_gt = with_gt
        self.with_label = with_label

    def __call__(self, results):
196
197
198
199
200
201
202
203
204
        """Call function to transform and format common fields in results.

        Args:
            results (dict): Result dict contains the data to convert.

        Returns:
            dict: The result dict contains the data that is formatted with
                default bundle.
        """
zhangwenwei's avatar
zhangwenwei committed
205
        # Format 3D data
206
207
208
209
210
        if 'points' in results:
            assert isinstance(results['points'], BasePoints)
            results['points'] = DC(results['points'].tensor)

        for key in ['voxels', 'coors', 'voxel_centers', 'num_points']:
zhangwenwei's avatar
zhangwenwei committed
211
212
213
214
215
216
217
218
219
220
            if key not in results:
                continue
            results[key] = DC(to_tensor(results[key]), stack=False)

        if self.with_gt:
            # Clean GT bboxes in the final
            if 'gt_bboxes_3d_mask' in results:
                gt_bboxes_3d_mask = results['gt_bboxes_3d_mask']
                results['gt_bboxes_3d'] = results['gt_bboxes_3d'][
                    gt_bboxes_3d_mask]
221
222
223
                if 'gt_names_3d' in results:
                    results['gt_names_3d'] = results['gt_names_3d'][
                        gt_bboxes_3d_mask]
224
225
226
227
228
                if 'centers2d' in results:
                    results['centers2d'] = results['centers2d'][
                        gt_bboxes_3d_mask]
                if 'depths' in results:
                    results['depths'] = results['depths'][gt_bboxes_3d_mask]
zhangwenwei's avatar
zhangwenwei committed
229
230
231
232
233
234
235
236
            if 'gt_bboxes_mask' in results:
                gt_bboxes_mask = results['gt_bboxes_mask']
                if 'gt_bboxes' in results:
                    results['gt_bboxes'] = results['gt_bboxes'][gt_bboxes_mask]
                results['gt_names'] = results['gt_names'][gt_bboxes_mask]
            if self.with_label:
                if 'gt_names' in results and len(results['gt_names']) == 0:
                    results['gt_labels'] = np.array([], dtype=np.int64)
237
                    results['attr_labels'] = np.array([], dtype=np.int64)
zhangwenwei's avatar
zhangwenwei committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
                elif 'gt_names' in results and isinstance(
                        results['gt_names'][0], list):
                    # gt_labels might be a list of list in multi-view setting
                    results['gt_labels'] = [
                        np.array([self.class_names.index(n) for n in res],
                                 dtype=np.int64) for res in results['gt_names']
                    ]
                elif 'gt_names' in results:
                    results['gt_labels'] = np.array([
                        self.class_names.index(n) for n in results['gt_names']
                    ],
                                                    dtype=np.int64)
                # we still assume one pipeline for one frame LiDAR
                # thus, the 3D name is list[string]
252
253
254
255
256
257
                if 'gt_names_3d' in results:
                    results['gt_labels_3d'] = np.array([
                        self.class_names.index(n)
                        for n in results['gt_names_3d']
                    ],
                                                       dtype=np.int64)
zhangwenwei's avatar
zhangwenwei committed
258
259
260
261
        results = super(DefaultFormatBundle3D, self).__call__(results)
        return results

    def __repr__(self):
262
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
263
        repr_str = self.__class__.__name__
264
265
        repr_str += f'(class_names={self.class_names}, '
        repr_str += f'with_gt={self.with_gt}, with_label={self.with_label})'
zhangwenwei's avatar
zhangwenwei committed
266
        return repr_str