gather_models.py 6.97 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
yinchimaoliang's avatar
yinchimaoliang committed
2
3
4
5
6
7
"""Script to gather benchmarked models and prepare them for upload.

Usage:
python gather_models.py ${root_path} ${out_dir}
"""

8
9
10
import argparse
import glob
import json
Wenwei Zhang's avatar
Wenwei Zhang committed
11
import mmcv
12
13
14
import shutil
import subprocess
import torch
Wenwei Zhang's avatar
Wenwei Zhang committed
15
from os import path as osp
16
17
18
19
20
21
22
23
24

# build schedule look-up table to automatically find the final model
SCHEDULES_LUT = {
    '_1x_': 12,
    '_2x_': 24,
    '_20e_': 20,
    '_3x_': 36,
    '_4x_': 48,
    '_24e_': 24,
25
26
27
    '_6x_': 73,
    '_50e_': 50,
    '_80e_': 80,
28
    '_100e_': 100,
29
    '_150e_': 150,
30
    '_200e_': 200,
31
32
    '_250e_': 250,
    '_400e_': 400
33
34
35
36
37
38
39
40
41
42
43
44
}

# TODO: add support for lyft dataset
RESULTS_LUT = {
    'coco': ['bbox_mAP', 'segm_mAP'],
    'nus': ['pts_bbox_NuScenes/NDS', 'NDS'],
    'kitti-3d-3class': [
        'KITTI/Overall_3D_moderate',
        'Overall_3D_moderate',
    ],
    'kitti-3d-car': ['KITTI/Car_3D_moderate_strict', 'Car_3D_moderate_strict'],
    'lyft': ['score'],
45
46
    'scannet_seg': ['miou'],
    's3dis_seg': ['miou'],
47
48
    'scannet': ['mAP_0.50'],
    'sunrgbd': ['mAP_0.50']
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
}


def get_model_dataset(log_json_path):
    for key in RESULTS_LUT:
        if log_json_path.find(key) != -1:
            return key


def process_checkpoint(in_file, out_file):
    checkpoint = torch.load(in_file, map_location='cpu')
    # remove optimizer for smaller file size
    if 'optimizer' in checkpoint:
        del checkpoint['optimizer']
    # if it is necessary to remove some sensitive data in checkpoint['meta'],
    # add the code here.
    torch.save(checkpoint, out_file)
    sha = subprocess.check_output(['sha256sum', out_file]).decode()
    final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8])
    subprocess.Popen(['mv', out_file, final_file])
    return final_file


def get_final_epoch(config):
    if config.find('grid_rcnn') != -1 and config.find('2x') != -1:
        # grid_rcnn 2x trains 25 epochs
        return 25

    for schedule_name, epoch_num in SCHEDULES_LUT.items():
        if config.find(schedule_name) != -1:
            return epoch_num


def get_best_results(log_json_path):
    dataset = get_model_dataset(log_json_path)
    max_dict = dict()
    max_memory = 0
    with open(log_json_path, 'r') as f:
        for line in f.readlines():
            log_line = json.loads(line)
            if 'mode' not in log_line.keys():
                continue

            # record memory and find best results & epochs
            if log_line['mode'] == 'train' \
                    and max_memory <= log_line['memory']:
                max_memory = log_line['memory']

            elif log_line['mode'] == 'val':
                result_dict = {
                    key: log_line[key]
                    for key in RESULTS_LUT[dataset] if key in log_line
                }
                if len(max_dict) == 0:
                    max_dict = result_dict
                    max_dict['epoch'] = log_line['epoch']
                elif all(
                    [max_dict[key] <= result_dict[key]
                     for key in result_dict]):
                    max_dict.update(result_dict)
                    max_dict['epoch'] = log_line['epoch']

        max_dict['memory'] = max_memory
        return max_dict


def parse_args():
    parser = argparse.ArgumentParser(description='Gather benchmarked models')
    parser.add_argument(
        'root',
        type=str,
        help='root path of benchmarked models to be gathered')
    parser.add_argument(
        'out', type=str, help='output path of gathered models to be stored')

    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    models_root = args.root
    models_out = args.out
    mmcv.mkdir_or_exist(models_out)

    # find all models in the root directory to be gathered
    raw_configs = list(mmcv.scandir('./configs', '.py', recursive=True))

    # filter configs that is not trained in the experiments dir
    used_configs = []
    for raw_config in raw_configs:
        if osp.exists(osp.join(models_root, raw_config)):
            used_configs.append(raw_config)
    print(f'Find {len(used_configs)} models to be gathered')

    # find final_ckpt and log file for trained each config
    # and parse the best performance
    model_infos = []
    for used_config in used_configs:
        exp_dir = osp.join(models_root, used_config)

        # get logs
        log_json_path = glob.glob(osp.join(exp_dir, '*.log.json'))[0]
        log_txt_path = glob.glob(osp.join(exp_dir, '*.log'))[0]
        model_performance = get_best_results(log_json_path)
        final_epoch = model_performance['epoch']
        final_model = 'epoch_{}.pth'.format(final_epoch)
        model_path = osp.join(exp_dir, final_model)

        # skip if the model is still training
        if not osp.exists(model_path):
            print(f'Expected {model_path} does not exist!')
            continue

        if model_performance is None:
            print(f'Obtained no performance for model {used_config}')
            continue

        model_time = osp.split(log_txt_path)[-1].split('.')[0]
        model_infos.append(
            dict(
                config=used_config,
                results=model_performance,
                epochs=final_epoch,
                model_time=model_time,
                log_json_path=osp.split(log_json_path)[-1]))

    # publish model for each checkpoint
    publish_model_infos = []
    for model in model_infos:
        model_publish_dir = osp.join(models_out, model['config'].rstrip('.py'))
        mmcv.mkdir_or_exist(model_publish_dir)

yinchimaoliang's avatar
yinchimaoliang committed
182
183
        model_name = model['config'].split('/')[-1].rstrip(
            '.py') + '_' + model['model_time']
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        publish_model_path = osp.join(model_publish_dir, model_name)
        trained_model_path = osp.join(models_root, model['config'],
                                      'epoch_{}.pth'.format(model['epochs']))

        # convert model
        final_model_path = process_checkpoint(trained_model_path,
                                              publish_model_path)

        # copy log
        shutil.copy(
            osp.join(models_root, model['config'], model['log_json_path']),
            osp.join(model_publish_dir, f'{model_name}.log.json'))
        shutil.copy(
            osp.join(models_root, model['config'],
                     model['log_json_path'].rstrip('.json')),
            osp.join(model_publish_dir, f'{model_name}.log'))

        # copy config to guarantee reproducibility
        config_path = model['config']
        config_path = osp.join(
            'configs',
            config_path) if 'configs' not in config_path else config_path
        target_cconfig_path = osp.split(config_path)[-1]
        shutil.copy(config_path,
                    osp.join(model_publish_dir, target_cconfig_path))

        model['model_path'] = final_model_path
        publish_model_infos.append(model)

    models = dict(models=publish_model_infos)
    print(f'Totally gathered {len(publish_model_infos)} models')
    mmcv.dump(models, osp.join(models_out, 'model_info.json'))


if __name__ == '__main__':
    main()